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ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ 

 

АБК – абсцизова кислота 

АК – амінокислоти 

АП – aмінокислотні препарати 

АФО – активні форми оксигену 

БТШ – білки теплового шоку 

ВЕРХ – високоефективна рідинна хроматографія 

ВМ – важкі метали 

ГАМК – гамма-аміномасляна кислота 

ГБ – гібереліни 

ГБ – гліцин-бетаїн 

ЖК – жасмонова кислота 

ІОК – індоліл-3-оцтова кислота 

ЛОГ – ліпоксигеназа 

МДА – малоновийдиальдегід 

МеЖК – метилжасмонат (метиловий ефір жасмонової кислоти) 

МС – мас-спектрометричний детектор 

NO – оксид нітрогену 

ПНЖК – поліненасичені жирні кислоти  

СК – саліцилова кислота 

СОД – супероксиддисмутаза 

УВЕРХ – ультрависокоефективна рідинна хроматографія 

ФС – фенольні сполуки 

ФСІ, ФСІІ – перша та друга фотосистеми 

ЦК – цитокініни 
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Вступ 

 

Вивчення механізмів формування стійкості рослин до несприятливих умов 

довкілля належить до найактуальніших завдань біологічної науки. Це зумовлено 

кліматичними змінами та антропогенним навантаженням на біосферу, до якого в 

останні роки через війну додалось значне забруднення атмосферного повітря, 

ґрунтів та водойм важкими металами. Від 24 лютого 2022 року Україна втратила 

19,3% посівних площ, про що свідчать результати дослідження Міжнародного 

центру української перемоги та Мережі захисту національних інтересів АНТС 

про вплив російської агресії на світову продовольчу безпеку (Ільченко, 2024). 

Близько 9% площі Земної кулі використовується для вирощування 

сільськогосподарських культур. Різноманітних стресових навантажень зазнає 

91% цих земель, що призводить до втрат більше 50% врожаю (Kajlaa et al., 2015). 

Абіотичні стреси негативно впливають на ріст і врожайність злакових культур – 

найважливішої групи однодольних рослин, які впродовж тисячоліть 

задовольняють харчові та інші потреби людства (див. діаграму). 

Фітогормони належать до найважливіших ендогенних речовин, задіяних у 

модуляції фізіологічних і молекулярних реакцій, які забезпечують виживання 

рослин за несприятливих умов (Kosakivska et al., 2022b; Sabagh et al., 2022). 

Фітогормони взаємодіють між собою, утворюючи надскладну мережу тісно 

переплетених шляхів біосинтезу, метаболізму, транспорту та сигналінгу (Roy, 

2024). Вони відіграють ключову роль у регуляції всіх етапів життєвого циклу 

рослин – від проростання насіння до старіння. Тому визначення їхнього вмісту 

та сайтів локалізації має важливе значення для пошуку шляхів управління 

швидкістю росту, розвитку та формування стресостійкості (Kosakivska et al., 

2024a). 

Фітогормони виконують роль медіаторів у трансдукції сигналів, що 

надходять з довкілля (рисунок). Найбільш дослідженим «стресовим» гормоном є 

абсцизова кислота (АБК). Зростання вмісту гормону за дії абіотичних стресорів 

спричиняє закриття продихів з наступним зменшенням рівня транспірації, 

збереженням вмісту води, що пом’якшує їхній негативний вплив. Зміни в 

концентрації ендогенної АБК є сигналом для експресії генів, що кодують білки, 

які чутливі до стресу і безпосередньо задіяні у формуванні стійкості рослин 

(Войтенко, Косаківська, 2016; Rehman et al., 2022). Саліцилова кислота (СК) – 

фітогормон фенольної природи – задіяна в регуляції процесів росту й розвитку, 

фотосинтезу, дихання, транспірації, підвищенні стійкості рослин до широкого 

спектру абіотичних стресів (Desci et al., 2025; Kosakivska, Shcherbatiuk, 2025). 



8 

 

Індоліл-3-оцтова кислота (ІОК), один з найбільш поширених ауксинів, регулює 

розтяг і поділ клітин, ембріогенез, формування органів, диференціацію 

провідних тканин, тропізми, відповідає за апікальне домінування тощо. За дії 

несприятливих факторів вміст ендогенної ІОК зменшується, що свідчить про 

залучення цього гормону у формування адаптаційної реакції. Проте сигнальні 

шляхи ІОК при стресах та механізми, що регулюються цим ауксином, поки що 

не встановлені (Sosnowski et al., 2023; Voytenko, Kosakivska, 2025). 

 

 
Діаграма розподілу втрат від абіотичних чинників 

 

 
Основні класи рослинних гормонів 

 

Цитокініни контролюють поділ клітин, стимулюють утворення та 

активність меристем пагонів, формують атрагуючу спроможність тканин, 

затримують процеси старіння листків, інгібують ріст і галуження кореня. 
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Молекули цитокінінів з певними варіаціями структури бічного ланцюга є 

медіаторами в різних сигнальних системах. Встановлена участь транс-зеатину 

та ізопентеніладеніну в передачі довгодистанційних сигналів в акропетальному 

та базипетальному напрямках. Об’єм інформації про значення та участь 

цитокінінів в адаптаційних процесах зростає з кожним роком (Mandal et al., 2022; 

Vedenicheva, Kosakivska, 2024). Гібереліни (ГК), які об’єднують понад 130 форм, 

належать до відносно молодого класу фітогормонів. Фізіологічна активність 

притаманна лише окремим гіберелінам, інші є попередниками в біосинтезі та 

неактивними формами. ГК проявляють поліфункціональну активність, 

стимулюють лінійний ріст стебла, пагонів і коренів, збільшення поверхні листка 

та числа міжвузлів, індукують цвітіння, детермінують стать, контролюють 

процеси проростання насіння. За регуляції переважної більшості процесів, ГК 

функціонують синергічно з ауксинами та виступають антагоністами цитокінінів 

і АБК (Kosakivska, Vasyuk, 2021; Castro-Camba et al., 2022b; Shah et al., 2023). 

Етилен бере участь у багатьох життєво важливих морфофізіологічних процесах, 

регулює низку стрес-залежних біохімічних реакцій рослин за умов абіотичних 

впливів (Francini, Ferrante, 2023). Брасиностероїди та жасмонати діють як 

сигнальні молекули, регулюють різні фізіологічні та біохімічні процеси в 

рослинах, включаючи відповіді на біотичні та абіотичні стреси (Babenko et al., 

2015; Miao et al., 2024).  

Серед компонентів, задіяних у формуванні адаптивних реакцій, важливе 

місце посідають фотосинтетичні пігменти, вторинні метаболіти, а також 

ферменти, що забезпечують перебіг катаболічних процесів, зокрема 

ліпоксигенази (ЛОГ). Останні відносять до еволюційно давніх ферментів, 

поширених у широкого кола організмів від про- до еукаріот. Вони каталізують 

окиснення поліненасичених жирних кислот, у результаті чого утворюється низка 

фізіологічно активних сполук, зокрема жасмонати, які виконують важливі 

сигнальні функції. Продукти ліпоксигеназного шляху беруть участь у регуляції 

росту й розвитку рослин, а також у формуванні стійкості до дії біотичних та 

абіотичних стресових чинників, у взаємодії з фітогормонами. Таким чином, 

показники ліпоксигеназної активності можуть слугувати молекулярним 

маркером стресостійкості (Liavonchanka, Feussner, 2006; Babenko et al., 2017; Rai 

et al., 2021). Фотосинтетична активність є визначальним фактором, що забезпечує 

ріст і розвиток рослин. Вміст фотосинтетичних пігментів, динаміка їхнього 

нагромадження в рослинах є важливим показником продуктивності злакових 

рослин (Ashraf, Harris, 2013; Киризий и др., 2014; Романенко та ін., 2023). 

Ефективність фотосинтетичного комплексу визначається відповідністю його 
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структурно-функціональних характеристик кліматичним й екологічним умовам 

(Kosakivska et al., 2008). Чутливою до несприятливих кліматичних факторів є 

ультраструктурна будова хлоропластів і мітохондрій (Babenko et al., 2014). Крім 

змін у вмісті пігментів стрес порушує клітинний гомеостаз, що призводить до 

вторинного окислювального стресу і утворення активних форм кисню (АФК). 

Фенольні сполуки беруть участь в антиоксидантному захисті клітин, оскільки 

завдяки унікальній молекулярній структурі здатні зв'язувати вільні радикали. 

Активна акумуляція фенольних сполук безпосередньо залежить від 

функціональної активності і ультраструктурної організації хлоропластів. Саме ці 

клітинні органели є регуляторами біогенезу флавоноїдів, найбільш поширених у 

вищих рослин, представників фенолів. Серед усіх вторинних метаболітів 

фенольної природи флавоноїди мають найвищий антиоксидантний і радикал-

нейтралізуючий потенціал (Babenko et al., 2019a, b; Kumar et al., 2020). 

Амінокислоти (АК) беруть участь у подоланні негативних впливів 

навколишнього середовища, сприяють стійкості до абіотичних стресів і є 

невід’ємною частиною імунної системи рослин (Zeier, 2013; Romanenko et al., 

2022, 2024). 

В умовах збільшення чисельності населення стрімко зростає попит на 

продовольчу продукцію. Виробництво злаків, серед яких домінантними є 

пшениця, жито, рис, кукурудза та ячмінь, стало проблемним, оскільки вони 

виявились достатньо вразливими до дії абіотичних і біотичних стресорів (Begcy, 

Dresselhaus, 2018). Посуха, засолення, екстремальні температури, забруднення 

важкими металами (ВМ), дефіцит поживних речовин, інтенсивне УФ-B 

опромінення та висока концентрація озону, патогенні збудники й захворювання 

негативно впливають на ріст і розвиток злаків (Mittler, 2006; Dresselhaus, 

Hückelhoven, 2018; Lamaoui et al., 2018). Згадані вище чинники разом із 

зростаючим антропогенним навантаженням належать до основних викликів при 

виробництві сільськогосподарських культур. Молекулярні біологи рослин 

намагаються зрозуміти механізми, пов'язані з реакціями на стрес, та отримати 

знання, які можна було б використовувати в селекційних програмах. У 

монографії проаналізовано сучасні відомості щодо молекулярних і фізіологічних 

реакцій культурних злаків на абіотичні стреси та обговорено шляхи 

використання таких знань для підвищення стресостійкості.  
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РОЗДІЛ 1. ДОМЕСТИКАЦІЯ ПШЕНИЦЬ 

 

Пшениця належить до найстародавніших одомашнених рослин людства. 

Понад 10 тис. років тому люди вели переважно кочовий спосіб життя, 

займаючись полюванням на диких тварин та збиранням диких рослин. Потім у 

деяких регіонах світу, зокрема у Передній Азії, відбувся перехід від способу 

життя мисливців-збирачів до відтворювального господарства (зокрема, 

землеробства), тобто, відбулася неолітична революція. Цей важливий 

поворотний момент в історії людства вплинув на все його подальше життя (Faris, 

2014). Неолітична революція у Західній Азії почалася на території 

Левантійського коридору та поширилася на територію Родючого Півмісяця, що 

розташований на Близькому Сході, а також охопила області, які простягаються 

від Йорданії, Ізраїлю, Лівану та Сирії через Південно-Східну Туреччину і вздовж 

річок Тигр та Євфрат через Ірак і Західний Іран (рис. 1.1). 

 

 
Рис. 1.1. Карта стародавнього Близького Сходу, що показує Родючий Півмісяць, де виникла 

гексаплоїдна пшениця спельта (адаптовано за Faris, 2014) 

 

Ця територія стала «колискою» сільського господарства. Були одомашнені 

ключові культури ранньої цивілізації та близькі родичі сучасних сортів пшениці: 

однозернянка Triticum monococcum L. і двозернянки T. turgidum ssp. та T. dicoccum 

L. За допомогою одомашнення люди контролювали репродукцію рослин та 

змінювали їхні характеристики в своїх інтересах. Для пшениці та інших зернових 
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культур найважливішим було отримання рослин із неламкою віссю головного 

колосу. Це могло б обмежити природне висипання насіння та сприяти 

ефективному збиранню врожаю. Інші зміни включали збільшення розміру 

насіння, можливість вільного обмолоту, підвищення якості зерна (Zeder, 2008). 

Однозернянка T. monococcum була першим одомашненим видом пшениці. 

Генетично-молекулярний аналіз виявив дуже динамічні центромери 

однозернянки, що вказує на давні та новітні генетичні зсуви, викликані 

структурними перебудовами. Секвенуваннягеному визначило структуру 

популяції та еволюційну історію однозернянки, виявило складні моделі 

гібридизації та інтрогресії після розповсюдження одомашнених рослин із регіону 

Родючого Півмісяця. Встановлено, що біля 1% геному сучасної пшениці Triticum 

aestivum L. походить від однозернянки (Ahmed et al., 2023). 

В еволюції й поширенні пшениць виділяють два основних періоди. Перший 

– період спонтанного відбору від диких предків, який тривав до ХІХ століття і 

відзначався вирощуванням низькопродуктивних рослин; другий – період 

системного відбору, який характеризується поступовим поліпшенням ключових 

ознак та отриманням стійких, високоврожайних генотипів (Faris, 2014). Дикий 

емер, який дав початок культурному емеру Тriticum dicoccum (2n = 4x = 28, геном 

AuAuBB), вирощували близько 10 тис. років тому. Від нього в результаті 

спонтанної гібридизації з козячою травою Aegilops tauschii Coss. (2n = 2x = 14, 

геном DD) близько 9 тис. років тому виникла рання спельта Тriticum spelta (2n = 

6x = 42, геном AuAuBBDD), а в подальшому інші таксони пшениці, серед яких і 

Triticum aestivum. Голозерна м’яка пшениця T. aestivum та плівчаста пшениця T. 

spelta характеризуються гомологічним геномним складом і належать до 

гексаплоїдних пшениць (рис. 1.2). 

На рисунку диплоїдні, тетраплоїдні та гексаплоїдні види розділені 

блакитними лініями. Оранжевий, зелений і пурпуровий кольори вказують, 

відповідно, на види з ламким стеблом і зернівками в щільних оболонках, на види 

з міцнішим стеблом і зернівками в щільних оболонках та на види з твердим 

міцним стеблом і зернівками в оболонках, які легко обмолочувати. Червоні 

стрілки вказують на випадки генетичних змін із залученням одного або декількох 

основних генів одомашнення – Br, Tg, або Q. Генотипи основних генів 

одомашнення вказані жирним шрифтом під таксономічними назвами та 

плоїдністю видів. Гомозиготність визначається на кожному локусі, а генотипи 

вказуються лише одноразово, щоб заощадити місце. Гіпотетичні генотипи 

виділено синім кольором, однак експериментальні докази щодо них відсутні. 

Блакитні стрілки вказують на формування гексаплоїдних підвидів T. aestivum ssp. 
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aestivum. Тверда і звичайна м’яка пшениці – дві сучасні широко культивовані 

форми поліплоїдної пшениці виділені жовтими прямокутниками (адаптовано за 

Faris, 2014). 

Нині більшість учених схиляється до думки, що голозернігексаплоїдні види 

пшениці походять від плівчастих Т. spelta L. та Т. macha Dekapr. & Menabde 

(T. aestivum subsp. macha (Dekapr. & Menabde) McKey) (Luo et al., 2007). 

Припускають, що плівчаста пшениця Т. spelta – найдавніший гексаплоїдний вид, 

від якого утворилися всі інші види, в тому числі пшениця м’яка, що зародилась в 

районі Родючого Півмісяця (рис. 1.2). 

 

 
Рис. 1.2. Генеалогія сучасних видів пшениць 
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Пшениця належить до головних зернових культур в Україні та світі. Її 

справедливо вважають рослиною культурного землеробства. Вона дає стійкі 

врожаї тільки за високого рівня агротехнології. Важливий елемент технології її 

вирощування, що впливає на продуктивність, використання високо врожайних 

сортів, стійких до біотичних і абіотичних стресорів (Моргун та ін., 2016). 

Розвиток аграрної галузі впродовж останніх двох століть мав одним із наслідків 

генетичну ерозію культурних рослин, яка чи не найбільше позначилась на 

пшениці. Припинено або зведено до мінімуму культивування всіх інших видів 

роду Triticum, окрім Т. aestivum. та Т. durum Desf., що спричинило звуження 

різноманіття генів, які зумовлюють стійкість до біотичних та абіотичних 

стресорів (Faris, 2014). Посіви пшениці стали вразливішими, а обсяги та якість 

урожаю нестабільними. Triticum aestivum вирощується на площі майже 240 

млн га. Таких обсягів не займає жодна інша зернова культура.  

Внаслідок зростання чисельності населення у світі до 2030 року попит на 

пшеницю, як очікується, збільшиться на 40% (Dixon et al., 2009). Для задоволення 

харчових потреб необхідне щорічне збільшення врожайності на 2%. Проте 

середньорічні темпи виробництва зерна пшениці значно відстають від темпів 

росту населення планети. Зростаючий дисбаланс можливо скоротити 

збільшенням виробництва зерна як за рахунок розширення посівних площ, так і 

шляхом підвищення врожайності. Перевага надається саме підвищенню 

врожайності, оскільки посівні площі у багатьох регіонах Землі досягли, або 

перевищили межі екологічної безпеки (Reynolds et al., 2001). Розширення наших 

знань і розуміння еволюції пшениці, включаючи генетичні механізми, що лежать 

в основі базових процесів доместикації, які сформували теперішню пшеницю, 

можна буде зрозуміти, як генетичне різноманіття, доступне прабатькам дикої 

пшениці, може бути використане для ініціації нової сільськогосподарської 

революції в умовах мінливого клімату (Faris, 2014). 

В Україні через несприятливі екологічні чинники спостерігається тенденція 

до зниження виробництва зерна пшениці. Вважається, що до 50% урожаю 

втрачається тільки через вплив абіотичних стресорів (екстремальні температури, 

посуха, засолення, важкі метали, ультрафіолетове опромінення тощо). Ще 10–

30% врожаю може бути втрачено внаслідок біотичних чинників (Моргун та ін., 

2016). Інтенсивна селекція, спрямована на підвищення врожайності, спричинила 

значне збіднення генофонду пшениці, що спонукало вчених до пошуку 

природних джерел господарсько-цінних ознак для її поліпшення. 

Розвиток культури землеробства та споживання, особливо у розвинених 

країнах світу, викликав усвідомлення цих та інших негативних результатів 
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генетичної ерозії та привернув увагу до видового та внутрішньовидового 

різноманіття пшениці. Щодалі активніше використовують місцеві форми та 

сорти пшениці, добре адаптовані до умов вирощування (так званий первинний 

генофонд), види пшениці інших рівнів плоїдності, представників близько 

спорідненого роду Aegilops (вторинний генофонд), а також види інших родів – 

Agropyron, Secale, Hordeum (третинний генофонд). Спельта (Triticum spelta L.) 

належить до найпоширеніших видів полб’яних (плівчастих) пшениць, містить 46 

хромосом і є генетично спорідненою з голозерною м’якою пшеницею Triticum 

aestivum. Спельта невибаглива до умов вирощування, холодо- та зимовитривала, 

стійка до перезволоження. Високі харчові якості та адаптованість до органічного 

землеробства привертають увагу до спельти в багатьох країнах Європи (Lacko-

Bartosova et al., 2010; Escarnot et al., 2012; Бабенко, 2018). Спельта вища за 

рослини м’якої пшениці, має більші площу листків, вміст хлорофілу, біомасу 

вегетативної частини (Ружицька, Борисова, 2015). Для спельти характерна менша 

товщина мезофілу, більша кількість продихів, стебло має менш широке кільце 

склеренхіми з більш дрібними судинно-волокнистими пучками та меншу 

кількість рядів судинно-волокнистих пучків у паренхімі, ніж у пшениці 

двозернянки Triticum dicoccum (Кириленко та ін., 2016). Порівняно з м’якою 

пшеницею, зерно спельти має вищу енергетичну цінність, більш збалансований 

амінокислотний склад, містить більше бета-каротину, ретинолу, вітамінів. 

Клейковина спельти, суха маса якої збільшується за рахунок мономірних білків і 

становить 31,6–44,9%, має підвищені показники розтягування, але меншу 

еластичність. Засвоювання білка перевищує 80%, а його вміст у різних сортах 

коливається від 11,0 до 21,3%. При цьому кількість глютену становить 31,6–

44,9% (Подпрятов, Ящук, 2013; Ружицька, Борисова, 2015; Liubych et al., 2017; 

Osokina et al., 2018). Спельта невибаглива до умов вирощування, росте на 

малородючих ґрунтах, стійка до холоду та надмірного зволоження, добре 

схрещується з тетраплоїдними пшеницями, завдяки чому широко 

використовується в селекційних програмах для покращення твердої та м’якої 

пшениць. Увага до цієї культури в країнах Європи зумовлена її придатністю до 

маловитратного органічного землеробства, характеризується харчовою та 

технологічною якістю, що дозволяє частково замінити спельтою традиційно 

домінуючі генотипи пшениці. Останнім часом стає актуальним збагачення 

харчових продуктів компонентами різних зернових культур. Тому використання 

спельти як джерела високого вмісту білка, багатої незамінними амінокислотами, 

досить перспективне для поліпшення технологічного потенціалу борошна під час 

виробництва хліба (Бабенко та ін., 2018). 
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Визначено два напрями селекційної роботи зі спельтою – відродження її як 

самостійної культури та використання як джерела господарсько-цінних ознак у 

селекційних програмах із м’якою пшеницею. Нині селекцією спельти 

займаються як вітчизняні, так і зарубіжні вчені. Серед вітчизняних установ 

найбільшого практичного результату в селекційній роботі зі спельтою досягли 

Всеукраїнський науковий інститут селекції, Уманський науковий інститут 

садівництва та Інститут рослинництва ім. В. Я. Юр’єва НААН України, в яких 

уже створені сорти внесені до Державного реєстру сортів України. Висока 

продуктивність Т. aestivum забезпечується завдяки умовам культивування: 

тривалому та теплому вегетаційному періоду з м’якою зимою, зрошенню, 

багатим на мінеральні речовини ґрунтам. В Україні, з її подекуди досить 

суворими та загалом різноманітними агрокліматичними умовами, вирощування 

зернових культур досить складна та ризикована справа. Спельта здатна давати 

стабільні врожаї без суворого дотримання технології виробництва в багатьох 

господарствах нашої країни і може бути альтернативою пшениці м’якій. 

Зважаючи на те, що останніми десятиріччями в Україні, як і в інших країнах, 

зростає попит на спельту як культуру органічного землеробства та джерела 

«органічної або здорової їжі» («organic / healthfood»), вирощування її  стає 

привабливим в умовах ринкової економіки. Тому сподіваємось, що узагальнені 

матеріали з питань генетики, біології, походження та поширення спельти, її 

господарсько-цінні ознаки та інші характеристики стануть у нагоді науковцям-

практикам, які планують займатись вирощуванням чи впровадженням спельти.  

Жито Secale cereale L. належить до важливих хлібних культур і посідає 

перше місце серед зернових у деяких регіонах, де вирощування пшениці 

ускладнене, або взагалі неможливе (Bushuk, 2001). Це найбільш холодостійка з 

поширених злакових культур, менш вибаглива до родючості ґрунтів і режиму 

вологості порівняно з пшеницею. На відміну від інших зернових культур, жито 

можна вирощувати без гербіцидів і в більшості випадків без фунгіцидів, що 

забезпечує екологічний урожай (Arendt, Zannini, 2013). Родоначальником 

сучасного культурного жита вважається бур’янисто-польове жито (Secale segetale 

(Zhuk.) Roshev.) з Південно-Західної Азії (Hagenblad et al., 2016). Воно з 

незапам'ятних часів засмічувало місцеві посіви зернових. Історичні та 

археологічні дані свідчать про те, що жито почали культивувати значно пізніше 

пшениці – у бронзовому віці, який для більшості країн Європи, Передньої і Малої 

Азії припадає на період близько 2 тис. років до н. е. (Hagenblad et al., 2016). 

На думку вчених, розповсюдження жита на територію нинішньої Східної та 

Західної Європи відбувалося через Кавказ. За розвитку землеробства все 
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виразніше виявлялися переваги жита, як рослини більш зимостійкої, 

витривалішої та невибагливої до ґрунтів (Behre, 1992). Людина переносила на 

північ посіви пшениці, засмічені бур'янисто-польовим житом, але пшениця за 

суворих умов гинула, а жито приносило врожаї. Північний хлібороб спирався на 

природний відбір. Прикладом походження культурної рослини з бур'яну-

супутника є розповсюдження жита не стільки штучно, скільки природним 

відбором (Sencer, Hawkes, 1980). На сьогодні виробництво жита зосереджено в 

декількох країнах, здебільшого в Північній півкулі. Загальна площа вирощування 

жита в світі становить 4,46 млн га, з яких значна частина 2,16 млн га (48,4%) 

припадає на країни ЄС, і лише 0,14 млн га (3,3%) на Україну. 

Вивчення механізмів формування стійкості рослин до несприятливих умов 

довкілля належить до найбільш актуальних питань біологічної науки. Це 

зумовлено глобальними кліматичними змінами та антропогенним 

навантаженням на біосферу, до якого в останні роки через війну додалось значне 

забруднення атмосферного повітря, ґрунтів і водойм важкими металами.  

Ця монографія присвячена аналізу та узагальненню новітніх знань про роль 

ендогенних і екзогенних фітогормонів у формуванні адаптаційної відповіді на 

дію абіотичних стресів. Зважаючи на постійно зростаюче антропогенне та 

кліматичне навантаження, цю інформацію можна використати для відбору та 

створення адаптованих генотипів культурних злаків. 

  



18 

 

РОЗДІЛ 2. ФІТОГОРМОНАЛЬНА РЕГУЛЯЦІЯ 

ПРОРОСТАННЯ НАСІННЯ 

 

Індукцію, підтримку та вихід насіння зі стану спокою контролюють 

фізіолого-біохімічні механізми, на які впливає широкий спектр ендогенних та 

екзогенних чинників. Серед екзогенних чинників впливу важливе місце 

посідають температурний, водний і світловий режими (Bewley, Black, 1994), 

серед ендогенних – фітогормональна система, яка регулює метаболізм і 

сигналінг при переході насіння зі стану спокою до проростання (Косаківська та 

ін., 2019б; Liu et al., 2013a, b; Chitnis et al., 2014; Shu et al., 2016). Серед рослинних 

гормонів АБК і гіберелінам належить ключова роль у регулюванні цих процесів: 

AБК задіяна в індукції переходу до стану спокою насіння та забезпечує 

підтримку гіберелінової активності при його проростанні (Kucera et al., 2005). 

Тому зміни балансу між вмістом AБК і гіберелінів та чутливість до цих гормонів 

формують механізм, що лежить в основі збереження спокою та проростання 

насіння (Shuetal., 2016; Finch-Savage, Footitt, 2017). 

З’ясовано, що вміст АБК в насінині змінюється впродовж ембріогенезу. На 

етапі інтенсивного поділу клітин і диференціації тканин, формування зародка та 

ендосперму рівень АБК низький, тоді як після припинення поділу клітин і під 

час акумуляції запасних речовин він зростає, а при переході до стану спокою 

знову зменшується (Chandrasekaran, Liu, 2014). АБК належить до головних 

чинників захисту насіння від осмотичного стресу в період набухання (Xiong, Zhu, 

2003). Деградація ендосперму в перші 36 год набухання розпочинається 

переважно з участю води та АБК (Tooro et al., 2000). Зріле насіння здатне 

витримувати посуху і несприятливий температурний режим, перебуваючи у 

стані спокою і зберігаючи життєздатність впродовж тривалого часу. У стані 

спокою знаходяться також ензими, протеїни, фітогормони та інші молекулярні 

компоненти насіння. Як тільки насіння починає вбирати воду, активуються 

метаболічні процеси, відбувається біосинтез протеїнів, поділ клітин, формування 

нових органел і органів проростків тощо. До регуляції всіх цих процесів 

залучаються фітогормони, функціональна активність яких забезпечує перехід від 

стану спокою до проростання насіння. 

На рослинах томату було встановлено, що ендогенна АБК задіяна в 

регуляції росту та розвитку етіолованого гіпокотилю (Humplík et al., 2017). 

Гормон пригнічував подовження гіпокотиля арабідопсису, що було обумовлено 

його впливом на метаболізм гіберелінів та ауксинів (Lorrai et al., 2017). АБК 
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пригнічує передчасне проростання насіння (Fujii et al., 2009), що обумовлено 

гальмуванням росту кореня (Graeber et al., 2010). 

Важливу роль у регуляції синтезу АБК відіграє ензим 9-цис-

епоксикаротиноїдна діоксигеназа (NCED). Показано, що гени, відповідальні за 

синтез цього ензиму, експресуються при зневодненні у листках і насінні 

Arabidopsis thaliana (Nambara, Marion-Poll, 2005). Виявилося, що за експресії 

AtNCED6 відбувався перехід до стану глибокого спокою і повністю 

пригнічувався процес передчасного проростання насіння. Вважається, що 

акумуляція АБК, контрольована рівнем експресії AtNCED6, може бути основним 

фактором, який відповідає за спокій насіння (Martinez-Andujar et al., 2011). 

Встановлено, що ген AtNCED3 відповідає за розвиток бічних коренів, 

формування і дозрівання зародка, спокій і висипання насіння. На початку 

розвитку зиготи функціонує материнська АБК, тоді як у стані спокою AtNCED3 

експресує синтез АБК у базальній частині насінини та в сім’яніжці (Behnam et 

al., 2013). У трансдукції АБК сигналінгу задіяні рецептори гормону, якими 

виявилися протеїни родини PYR/PYL/RCAR (Park et al., 2009), рецептор 

плазматичної мембрани, пов'язаний з G-протеїном (Liu et al., 2007; Pandey et al., 

2009), Н-субодиниця Mg-хелатази (Shen et al., 2006) та регулятори активності 

фосфатази PP2C (Ma et al., 2009). АБК негативно регулює проростання зернівок 

рису (Fu et al., 2025). Фактори, що сприяють біосинтезу та сигналізації АБК, 

зазвичай мають негативний вплив на проростання, тоді як ті, що пригнічують 

біосинтез та сигналінг АБК або посилюють деградацію АБК, мають позитивний 

вплив (Gong et al., 2022). 

АБК та гібереліни (ГБ) діють антагоністично в контролі спокою та 

проростання насіння. АБК регулює індукцію та підтримку стану спокою, тоді як 

гібереліни посилюють проростання (Tuan et al., 2018). Завдяки протеомному 

аналізу визначені шляхи, за якими гібереліни регулюють проростання насіння 

(Gallardo et al., 2002). Встановлено, що гібереліни стимулюють продукування 

ензимів α-амілази, протеаз та β-глюконаз, які задіяні у лізисі ендосперму 

(Yamaguchi, 2008). Ендосперм насінини, який складається з тонкостінних клітин 

з крохмальними зернами, оточеними алейроновим шаром, є джерелом запасних 

поживних речовин, котрі під час проростання насіння розщеплюються на 

розчинні цукри, амінокислоти та інші продукти і транспортуються до зародку. 

Вважається, що при проростанні насіння синтез гіберелінів у алейроновому шарі 

не відбувається (Gubler et al., 1995). Індукція лізису ендосперму починається 

після передачі гіберелінового сигналу (Ogawa et al., 2003). Гібереліни 

синтезуються в зародку, звідки транспортуються до алейронового шару, де через 
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транскрипційні фактори SLN1 і GAMYB регулюють активність α-aмілази 

(Fincher, 1989). 

Встановлено, що експресія генів, відповідальних за синтез оксидаз, задіяних 

у біосинтезі гіберелінів, відбувається в епітелії і тканинах проростаючого 

зародка зернівок рису (Kaneko et al., 2003). Дія гіберелінів не обмежується 

експресією гідролітичних ензимів, гормон запускає запрограмоване відмирання 

клітин (Gubler et al., 2002). Визначені рецептори гіберелінів GID1a, GID2b, і 

GID2c специфічні для окремих видів рослин (Voegele et al., 2011). Виявилося, що 

насіння гіберелін-дефіцитних мутантів проростало лише після обробки 

екзогенними гіберелінами (Shu et al., 2013). Натомість мутантні за ГК2-

оксидазами (ензимами, що дезактивують гібереліни) рослини демонстрували 

швидке проростання насіння (Yamauchietal., 2007). Мутації DELLA генів RGL2 

(RGA-LIKE2) і SPY (SPINDLY), які негативно впливають на функціонування 

гіберелінового сигнального шляху, прискорювали проростання насіння 

гіберелін-дефіцитних мутантів арабідопсису (Lee et al., 2002). Обробка 

гібереліном рослин дикого ячменю (Hordeum spontanium) через 50 днів після 

запилення призвела до найвищої активності ферментів α-амілази, протеази та 

інвертази, задіяних у проростанні зернівок (Mjidi et al., 2024). 

Баланс між гіберелінами та АБК є вирішальним при визначенні стану 

насіння (рис. 2.1). Так, високий вміст ендогенної АБК і низький гіберелінів 

призводять до спокою, тоді як низький рівень АБК і високий гіберелінів 

індукують дозрівання та проростання насіння. Регуляція балансу здійснюється 

на рівні синтезу гормонів і балансу їхніх сигнальних каскадів (Seo et al., 2006; 

Piskurewicz et al., 2008; Izydorczyk et al., 2017; Tuan et al., 2018). Повідомлялося, 

що AБК пригнічує біогенез гіберелінів (Seo et al., 2006). Останні також негативно 

впливають на синтез АБК під час проростання насіння (Shuetal., 2013). Показано, 

що на баланс між АБК і гіберелінами впливають температура, освітлення та 

активні форми кисню, утворення яких розглядається як ендогенний сигнальний 

фактор (Gubler et al., 2008; Ishibashi et al., 2015; Izydorczyk et al., 2017). 

Проростання насіння знаходиться під контролем генів спокою QTL DOG1, а 

також відповідальних за синтез гіберелінів GID1A і GID1C й АБК ABI3, ABI1 і 

ABI5 генів, які контролюють проростання (Bassel et al., 2011; Tuan et al., 2018). 

Однак молекулярні механізми контролю балансу між АБК і гіберелінами до 

теперішнього часу залишаються до кінця нез’ясованими (Vishal, Kumar, 2018). 
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Рис. 2.1. Акумуляція фітогормонів та експресія ключових генів при дозріванні насіння 

 

Під час дозрівання насіння відбувається пригнічення транскрипції задіяних 

у катаболізмі АБК генів CYP707As і активація генів біосинтезу AБК – NCEDs, 

що призводить до накопичення АБК. Гени регулятори стану спокою DOG1, DEP, 

ABI3, ABI4 і SPT активуються і взаємодіють один з одним. Епігенетичні 

регулятори SUVH4, SUVH5, LDL1 і LDL2 пригнічують транскрипцію DOG1 і 

ABI3, тоді як WRKY41 і RAF10/11 безпосередньо контролюють експресію ABI3. 

Вміст ауксинів зростає, тоді як рівень гіберелінів зменшується. 

Повідомлялось, що тканини ембріона і ендосперму на ранній тапізній стадії 

наливу зернівок ячменю (Hordeum vulgare L.) характеризуються підвищеним 

вмістом АБК і відносно високим рівнем гіберелінів (ГК1 та ГК4), ІОК, цитокінінів 

(ізопентеніладенозину, транс-зеатину й дигідрозеатину) та саліцилової кислоти. 

Ембріон та ендосперм демонструють пік рівня АБК на стадії фізіологічної 

зрілості. Ці результати вказують на те, що розвиток насіння ячменю 

опосередковується просторово-часовою модуляцією метаболізму та рівнів 

рослинних гормонів (Tuan et al., 2023). 

Тривалий час участь ауксинів як регуляторів проростання насіння не 

розглядалась, хоча взаємодія ауксинів з АБК була зафіксована при проростанні 

насіння арабідопсису (Wang et al., 2011а). Встановлено, що інгібування росту 

ембріональної осі при проростанні насіння арабідопсису відбувалося за умови 

активації сигнального шляху ауксину під впливом АБК (Belin et al., 2009). 

Підвищення вмісту індоліл-3-оцтової (ІОК) кислоти при проростанні 

рекальцитратного насіння Araucaria angustifolia і Ocotea odorifera було 

зафіксовано на тлі зростання кількості поліамінів, фізіологічна активність котрих 

пов’язана з розвитком і дозріванням плодів, а також проростанням насіння (Dias 

et al., 2009; Pieruzzi et al., 2011). Екзогенні ауксини пригнічували проростання 
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насіння за умови засолення ґрунту, що засвідчило участь гормону в регуляції 

процесів спокою і проростання за дії абіотичних стресорів (Park et al., 2011). 

Екзогенна IОК гальмувала проростання зернівок пшениці (Ramaih et al., 2003). 

З’ясувалось, що вихід зі стану спокою після дозрівання зернівок пшениці 

пов'язаний зі зниженням їхньої чутливості до ауксину (Liu et al., 2013a). 

Генетичні дослідження виявили подібну до АБК позитивну кореляцію між 

вмістом ауксину, його сигналінгом і станом спокою. Так, трансгенне насіння з 

гіперсинтезом ауксину відзначалось більш глибоким станом спокою. Загалом, 

ауксин позитивно впливав на сигналінг АБК, що сприяло реалізації його 

фізіологічного ефекту (Liu et al., 2013b). Екзогенні гібереліни діяли на вміст і 

транспорт ауксину у проростаючому насінні арабідопсису, експресуючи гени, 

які кодують ауксинові транспортери, а також гени, задіяні у синтезі й сигналінгу 

ауксинів (Ogawa et al., 2003). Дослідження експресії споріднених до ауксинів 

генів виявили, що під час проростання гормон знаходиться в кінчику корінця 

насінини, а накопичена в насінині ІОК стає основним джерелом гормону для 

проростків (Hentrich et al., 2013). Показано, що ауксинові PIN-транспортери, які 

завдяки полярній субклітинній локалізації визначають спрямованість транспорту 

гормону, здатні змінювати вектор ауксинових потоків і програму розвитку 

рослини (Friml et al., 2002, 2003). Так, транспортер PIN7, локалізований у верхній 

частині суспензійних клітин, спрямовував потік ауксину до молодого ембріону, 

тоді як у проембріона на стадії восьми клітин виявлений транспортер PIN1 без 

чітко вираженої полярності, а на більш пізніх етапах розвитку транспортери PIN1 

і PIN7 спрямовували ауксиновий потік до кореня (Friml et al., 2003). Акумуляція 

ауксину слугувала сигналом для розвитку кореня та сердечка. Це дозволило 

припустити, що тригером для специфікації майбутньої кореневої меристеми є 

поляризація PIN транспортерів (Friml et al., 2004; Michniewicz et al., 2007). Якщо 

поляризація PIN транспортера не відбувалася, ауксин накопичувався в 

апікальній частині ембріона, що призводило до початку розвитку 

коренеподібних структур від ембріональної тканини листка (Dhonukshe et al., 

2008). 

Цитокініни взаємодіють з АБК та етиленом для точного налаштування часу 

проростання насіння (Tuan et al., 2018). У зернових культурах (пшениця, 

кукурудза, рис) цитокініни накопичуються в ендоспермі на ранніх стадіях 

розвитку зерна, що відповідає швидкому поділу клітин ембріона та впливає на 

тривалість періоду спокою та проростання зернівок (Stirk et al., 2012). Дозрівання 

зернівок пшениці відбувається на тлі зниження рівня ізопентеніладеніну (іП), що 
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вказує на участь цитокінінів в індукції та підтримці стану спокою (Tuan et al., 

2019). 

Аналіз розподілу і динаміки ендогенних цитокінінів під час набухання, 

появи первинного корінця та формування проростків показали, що після 

набухання зернівок вівса й кукурудзи перший пік у вмісті цитокінінів передував 

прокльовуванню первинного корінця, а другий – з'являвся після прокльовування. 

У досліджених зразках превалювали цис-зеатин, іП та ароматичні форми 

цитокінінів (Stirk et al., 2012). Позитивний вплив цитокінінів на проростання 

насіння обумовлений пригніченням транскрипції протеїну АВ15, задіяного в 

сигналінгу АБК (Wang et al., 2011b), та індукцією його деградації (Guan et al., 

2014). 

Під час проростання зернівок пшениці, кукурудзи та рису вміст етилену 

зростає (Zapata et al., 2004). Етилен не транспортується з одних органів рослини 

в інші, а передача етиленового сигналу здійснюється його попередником – 

аміноциклопропанкарбоновою кислотою (Bleecker, Kende, 2000). Подібно до 

цитокініну, сприйняття етиленового сигналу відбувається з участю 

двокомпонентного протеїнового рецептора кінази, який знаходиться на мембрані 

ендоплазматичного ретикулуму (Kendrick, Chang, 2008). Мутації регуляторів 

сигнального шляху етилену призводили до глибокого спокою насіння (Subbiah, 

Reddy, 2010). Встановлено, що етилен негативно впливає на біогенез і сигналінг 

АБК (Cheng et al., 2009; Linkies et al., 2009; Wilson et al., 2014). Протидіючі впливу 

AБК, етилен позитивно впливає на процес проростання насіння (Arc et al., 2013; 

Corbineau et al., 2014).  

Брасиностероїди (БР), контролюючи інгібіторні ефекти АБК, позитивно 

впливають на проростання насіння (Hu, Yu, 2014). Разом із гіберелінами та 

етиленом БР індукують ріст зародку, посилюючи руйнування ендосперму (Finch-

Savage, Leubner-Metzger, 2006). Показано, що БР безпосередньо регулюють ріст 

зародкової осі під час проростання насіння, проте вихід із стану спокою 

відбувається гіберелін-залежним шляхом (Leubner-Metzger, 2003).  

Саліцилова кислота (СК) пригнічує індуковану гібереліном активність 

ферменту α-амілази, гальмує проростання зернівок ячменю та рису через шлях, 

що включає експресований АБК ген WRKY (Xie et al., 2007). Проростання 

зернівок кукурудзи повністю пригнічувалося після екзогенної обробки СК у 

концентрації від 3 мМ до 5 мМ (Guan, Scandalios, 1995). Вважається, що 

негативний ефект високих доз екзогенної СК на проростання насіння 

обумовлений окисним стресом, індукованим фітогормоном (Rivas-SanVicente, 

Plasencia, 2011). 
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Жасмонова кислота (ЖК) та її похідні накопичуються в органах і тканинах 

рослин у результаті експресії жасмонат-індукованих генів (Babenko etal., 2015). 

Вони є продуктами ліпоксигеназного шляху окиснення поліненасичених жирних 

кислот (Babenko et al., 2017). Подібно до АБК, екзогенна ЖК затримувала 

проростання насіння (Nambara et al., 2010). Водночас вона пригнічувала 

біосинтез і активність AБК під час проростання зернівок пшениці, що свідчить 

про антагонізм між цими двома фітогормонами (Jacobsen et al., 2013). 

Метилжасмонат гальмував проростання зернівок і подовження коренів 

кукурудзи внаслідок зниження активності й вмісту α-амілази та синтезу етилену 

(Norastehnia et al., 2007). 

Стриголактони (СЛ) – група каротиноїдних сполук, які продукуються та 

виділяються кореневою системою рослин у ризосферу (Mishra et al., 2017). СЛ 

виступають тригером при проростанні насіння, впливаючи на баланс між АБК та 

гіберелінами (Toh et al., 2012). 

Отже, рослинні гормони цитокініни, етилен, брасиностероїди, жасмонова і 

саліцилова кислоти та стриголактони задіяні в регуляції процесів проростання 

насіння скоріше за все через інтегровану мережу взаємодії з АБК і гіберелінами 

(рис. 2.2). 

 

 
Рис. 2.2. Інтегрована мережа фітогормональної взаємодії при проростанні насіння 

 

Зріле насіння характеризується високим вмістом АБК, низьким рівнем 

гіберелінів та ауксинів. У першу фазу проростання – стратифікації – вихід зі 
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стану спокою регулюється на рівні біогенезу, сигналінгу та взаємодії між АБК, 

гіберелінами та ауксинами. АБК і ауксини відповідають за спокій насіння. При 

цьому ауксини позитивно впливають на транскрипцію ABI3. AP2 домен, що 

включає транскрипційні фактори ABI4, DDF1, OsAP2-39 і CHO1, індукує спокій 

насіння, активуючи біосинтез АБК і пригнічуючи біогенез/накопичення 

гіберелінів. Після виходу зі стану спокою починається проростання насіння, у 

регуляції якого ключову роль відіграє баланс між АБК і гіберелінами. 

Транскрипційним факторам АRFs, MYB96, ABI3, ABI4 і ABI5, генам CYP707A1 

і CYP707A2, а також регуляторам сигналінгу гіберелінів DELLA належить 

провідна роль у цьому процесі. Регуляція ABI5 здійснюється на рівні 

транскрипції та пост-транскрипції (ABI4 підвищує його експресію, 

фосфопротеїн BIN2 і протеїнкіназа PKS5 фосфорилюють ABI5). На заключному 

етапі проростання насіння гібереліни індукують лізис ендосперму, що 

призводить до вивільнення корінця  

Разом із фітогормонами процеси спокою і проростання насіння 

регулюються різними екологічними факторами. Показано, що світло експресує 

гени GA3ox1 і GA3ox2, відповідальні за біосинтез гіберелінів і репресує ген 

катаболізму гормону – GA2ox2 (Cho et al., 2012). Виявилося, що синє світло 

пригнічує проростання зернівок ячменю, посилюючи транскрипцію генів 

біосинтезу АБК і пригнічуючи гени, відповідальні за катаболізм гормону (Gubler 

et al., 2008; Barrero et al., 2014). Іншим фактором навколишнього середовища, 

який впливає на спокій насіння, регулюючи баланс між біогенезом АБК і 

гіберелінів, є температура (Footitt et al., 2011; Kendall et al., 2011). Показано, що 

температура викликала зміни у проникності ендосперму при дозріванні насіння. 

Однак виявилося, що АБК і гібереліни не були причетні до регуляції цього 

процесу (MacGregor  et al., 2015). Хоча механізми, що лежать в основі регуляції 

передчасного проростання насіння у рослин пшениці фенотипу TaMFT-RNAi до 

кінця нез’ясовані, виявилося, що MFT, гомолог TaMFT у рослин арабідопсису, 

відігравав при цьому ключову роль у визначенні балансу між АБК і гіберелінами 

(Xi et al., 2010; Nakamura et al., 2011). До відомих на сьогодні шляхів мінімізації 

негативних впливів на проростання насіння і ріст проростків належить 

праймування водою, органічними екстрактами, сольовими розчинами та 

регуляторами росту. Гібереліни, ауксини і цитокініни – основні, фітогормони, 

які використовуються для праймування з метою покращання проростання 

насіння за стресових умов (Muhei, 2018). АБК є інгібітором проростання. 

Пригнічення поглинання води на початку проростання насіння затримує 

розвиток зародку, проте таку дію АБК можна заблокувати завдяки гіберелінам і 
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ауксинам (Chauhan et al., 2009). Гібереліни відповідають за активність ензимів, 

задіяних у розщепленні крохмалю ендосперму, необхідного для розвитку 

зародку, і діють синергічно з ауксинами і цитокінінами. Стійкість до засолення 

після обробки зернівок пшениці гіберелінами зростала (Iqbal, Ashraf, 2013). 

Поліаміни позитивно впливали на проростання зернівок і ріст проростків 

пшениці за дії посухи, що було обумовлено їхнім впливом на ендогенні 

фітогормони (Yang et al., 2016b). 

Ми дослідили проростання зернівок рослин голозерної м’якої пшениці 

Triticum aestivum L. сорту Подолянка, плівчастої пшениці Triticum spelta L. сорту 

Франкенкорн та озимого жита Secale cereale L. сорту Богуславка. Сорт-стандарт 

Подолянка зареєстрований у 2003 році. Оригінатори: Інститут фізіології рослин 

і генетики НАН України та Миронівський інститут пшениці ім. В.М. Ремесла 

НААН України. Сорт належить до групи сильних безостих пшениць, 

різновидність – лютесценс, високопродуктивний, надзвичайно стійкий до 

вилягання, морозостійкий, має високу посухостійкість, толерантний до 

ураження борошнистою росою, іржею та фузаріозу. Невибагливий до умов 

вирощування, попередників і строків сівби, має високу екологічну пластичність. 

Характеризується доброю регенераційною здатністю, інтенсивним початком 

відростання і швидким приростом вегетативної маси, витривалістю до весняних 

похолодань, має високу кущистість, густий стеблостій (Моргун та ін., 2015). 

Пшениця спельта є однією з найдавніших пшениць. Характеризується 

високою харчовою цінністю, адаптована до несприятливих умови 

навколишнього середовища, приваблива для фермерів, селекціонерів і харчових 

технологів (Бабенко та ін., 2018; Haliniarz et al., 2020). Сорт спельти Франкенкорн 

створений в 90-х роках ХХ століття на основі старих сортів спельти шляхом 

зворотного схрещування. Середньорослий, стійкий до вилягання, 

морозостійкий, екологічно пластичний, вважається генетично найчистішим 

сортом T. spelta (Schmitz, 2006). Жито Secale cereale L. належить до важливих 

хлібних культур і посідає перше місце серед зернових у регіонах, де 

вирощування пшениці ускладнене або взагалі унеможливлене (Bushuk, 2001). Це 

найбільш холодостійка зі злакових культур, менш вибаглива до родючості 

ґрунтів і режиму вологості в порівнянні з пшеницею. На відміну від інших 

зернових культур, жито можна вирощувати без використання гербіцидів і 

фунгіцидів, що забезпечує екологічний урожай (Arendt, Zannini, 2013). 

Озиме жито сорту Богуславка є вітчизняним продуктом. Сорт був створений 

науковцями Інституту фізіології рослин і генетики НАН України та Носівської 

селекційної дослідної станції Чернігівського інституту агропромислового 
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виробництва НААН України, занесений до Державного реєстру та впроваджений 

у аграрне виробництво. Це – середньостиглий сорт, має середню посухостійкість, 

морозостійкість і хворобостійкість, успішно вирощується в багатьох 

фермерських господарствах України. Його рекомендував нам для дослідження 

академік НАН України, відомий селекціонер, директор Інституту фізіології 

рослин і генетики НАН України Володимир В. Моргун. З огляду на сьогодення, 

коли значна частина орних земель України забруднена і спаплюжена через 

російську агресію, вивчення біологічних особливостей жита Богуславка як 

невибагливої хлібної культури є досить актуальним.  

Зернівки спельти отримані з колекції Національного центру генетичних 

ресурсів рослин України (м. Харків). Зернівки пшениці Подолянка та жита 

Богуславка отримані з колекції Інституту фізіології рослин і генетики НАН 

України (рис. 2.3). 

 

 
Рис. 2.3. Колоски та зернівка в лусках Triticum spelta L. (1), Triticum aestivum L. (2) та 

Secale cerealе L. (3) 

 

Для вивчення лабораторної схожості сухі відкалібровані зернівки пшениці 

Подолянка, спельти Франкенкорн і жита Богуславка (по 90 од.) замочували на 3 

год у дистильованій воді, після чого переносили в чашки Петрі на зволожений 

дистильованою водою фільтрувальний папір і пророщували в термостаті за 

температури +22 °С впродовж трьох діб (рис. 2.4). Морфометричні показники 

фіксували на 24-, 48- та 72-гу год вегетації. 
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Рис. 2.4. Зернівки Triticum speltа L. сорту Франкенкорн та Triticum aestivum L. сорту Подолянка 

впродовж інкубації на воді 

 

Досліджувані види злаків відзначались високим показником лабораторної 

схожості. Максимум пророслих зернівок у пшениці зафіксовано через 24 год 

пророщування, у спельти – після 48 год, у жита – через 72 год. Показники 

проростання зернівок жита були найнижчими і сягали 93% (див. табл. 1.1.). 

Впродовж перших 24 год пророщування у жита та спельти інтенсивніше 

видовжувалась плюмула, у пшениці – первинний корінь. Під час наступних 

етапів пророщування (48 та 72 год) довжина коренів у всіх видів була більша за 

висоту надземної частини. На 48-му годину розміри колеоптиля збільшились у 

пшениці в 1,9, спельти – в 5,2, жита – в 4,7 раза. 
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Таблиця 1.1. Лабораторна проростання зернівок Triticum aestivum L. сорту 

Подолянка, Ttiticum spelta L. сорту Франкенкорн і Secale cerealе L. сорту 

Богуславка (%) 

 

Вид 
Години пророщування 

24 48 72 

Triticum aestivum L. 97 - - 

Triticum spelta L. 94 96 - 

Secale cereale L. 78 87 93 

 

Довжина коренів зросла більш ніж у 4 рази у спельти та жита і в 5 разів – у 

пшениці (рис. 2.5). За показниками біомаси корені поступались надземній 

частині. Біомаса проростків за три доби зросла у пшениці та спельти вдвічі, у 

жита – у 2,4 раза (рис. 2.6). Отримані результати продемонстрували хороші 

показникипроростання та інтенсивний ріст проростків озимих пшениці, спельти 

та жита за лабораторних умов. 

 

 
Рис. 2.5. Лінійні розміри органів проростків Triticum aestivum L. сорту Подолянка, Ttiticum 

spelta L. сорту Франкенкорн та Secale cereale L. сорту Богуславка 

 

Отже, спокій і проростання насіння є результатом інтегральної взаємодії 

ендогенних та екзогенних факторів, які сукупно визначають характер акумуляції 

фітогормонів і функціонування їхніх сигнальних каскадів. Біосинтез і транспорт 

фітогормонів, їхні сигнальні шляхи, які регулюються генетичною системою, 

утворюють складну мережу зв'язку. АБК є ключовим індуктором спокою 

насіння, тоді як гібереліни регулюють процес його проростання. Фактори 

транскрипції та сигнальні компоненти цих двох фітогормонів допомагають 

підтримувати ендогенний баланс між ними. 
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Рис. 2.6. Біомаса органів проростків Triticum aestivum L. сорту Подолянка, Ttiticum spelta L. 

сорту Франкенкорн і Secale cereale L. сорту Богуславка 

 

Проростання насіння та розвиток проростків належать до найбільш 

вразливих до абіотичних стресів етапів онтогенезу. За наявності сприятливих 

умов насіння здатне швидко проростати. Обмежуючими факторами, крім 

фізіологічного спокою, є абіотичні стреси.  

На сьогодні досягнуто значного прогресу в розкритті молекулярних 

механізмів контролю балансу між АБК і гіберелінами на прикладі модельної 

рослини Arabidopsis thaliana. Однак це явище залишається малодослідженим у 

зернівках злакових рослин, для котрих можливі специфічні механізми регуляції 

переходу зі стану спокою до проростання. Частково проаналізовано участь 

інших рослинних гормонів у формуванні механізмів контролю спокою і 

проростання зернівок злаків. Встановлено, що передпосівне проростання, яке 

викликає значні втрати врожаю і знижує якість зернових культур, тісно пов'язане 

з рівнем спокою насіння. Тому розуміння молекулярних механізмів регуляції 

балансу між АБК і гіберелінами, участь в цьому інших фітогормонів 

надзвичайно важливе для розробки нових біотехнологічних підходів селекції 

стійких до передпосівного проростання сортів, збільшення врожайності та якості 

зернових культур. 
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РОЗДІЛ 3. ЕНДОГЕННІ ФІТОГОРМОНИ ЗЛАКІВ ЗА ДІЇ НЕГАТИВНИХ 

КЛІМАТИЧНИХ ФАКТОРІВ 

 

Фітогормони відіграють ключову роль у регуляції всіх етапів життєвого 

циклу – від проростання насіння до старіння. Це підкреслює важливість 

визначення їхнього вмісту і встановлення місць локалізації в рослинному 

організмі. Такі відомості допоможуть знайти ефективні засоби впливу на 

швидкість росту й розвитку рослин, а також стануть основою для розуміння 

процесу формування стресостійкості. Важливо також враховувати, що рослинні 

гормони діють у наномолярних концентраціях, тому їхнє визначення може бути 

складним і вимагати використання достатньо чутливих і точних аналітичних 

методів. 

 

3.1. Екстракція і кількісне визначення фітогормонів злаків 

 

Оцінка ендогенного вмісту фітогормонів є складним аналітичним 

завданням через їхню надзвичайно низьку концентрацію в рослинних тканинах. 

Зазвичай це лише нанограми чи пікограми на грам біомаси, тоді як речовини, що 

ускладнюють аналіз, присутні у значно вищих концентраціях (рис. 3.1). Основну 

перешкоду становлять вторинні метаболіти, що й визначає головну проблему 

кількісного аналізу рослинних гормонів, водночас біополімери відносно легко й 

швидко відділяються. 

На сьогодні при кількісному аналітичному визначенні рослинних гормонів 

використовують переважно фізико-хімічні методи. Це, насамперед, 

високоефективна (ВЕРХ) та ультрависокоефективна (УВЕРХ) рідинна 

хроматографія з використанням сучасних хроматографічних колонок 

(наповнених сорбентами Core-Shell) у поєднанні з чутливими мас-детекторами. 

Значна увага також приділяється екстрагуванню й ізоляції фітогормонів зі 

складних рослинних матриць. Застосування картриджів твердотільної екстракції 

(SPE) є основою очищення і фракціонування екстрактів у ході пробопідготовки 

до аналізу (Щербатюк та ін., 2021; Dobrev et al., 2012; Kosakivska et al., 2020b). 

Сучасна рідинна хроматографія може ефективно й швидко розділяти 

складні суміші сполук із широким діапазоном полярності без необхідності їхньої 

дериватизації. Одним з перших для одночасного аналізу гормонів рослин 

чотирьох класів (ауксини, цитокініни, гібереліни й АБК) та їхніх метаболітів 

було розроблено метод ВЕРХ у тандемі з мас-спектрометрією за умов іонізації 

«електроспрей» (Chiwocha et al., 2003). 
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Рис. 3.1. Орієнтовні концентраційні рівні фітогормонів у тканинах нестресованих рослин і 

вміст вторинних метаболітів, що заважають їхньому аналізу (адаптовано за Chu et al., 2017) 

 

Також було розроблено метод ВЕРХ/ЕС-МС/МС аналізу семи основних 

класів рослинних гормонів, включаючи ауксини, цитокініни, гібереліни, АБК, 

жасмонати, брасиностероїди та СК у тканинах Arabidopsis thaliana (Panetal., 

2008). На сьогодні найоптимальнішим і загальноприйнятим аналітичним 

методом для аналізу фітогормонів є ультрависокоефективна рідинна 

хроматографія УВЕРХ у тандемі з мас-спектрометричним детектором, 

обладнаним потрійним квадруполем МС/МС (рис. 3.2). Сучасні тандемні мас-

спектрометри з потрійним квадруполем мають такі характеристики, які роблять 

їх ідеальними детекторами для аналізу фітогормонів, а саме: високу чутливість, 

селективність і швидкодію (Pan, Wang, 2009; Müller, Munné-Bosch, 2011; 

Tarkowská et al., 2014). Такі мас-спектрометри належать до найчутливіших типів 

детекторів, здатних виявити навіть кілька пікограм речовини-аналіта. Прилад дає 

змогу здійснювати одночасний аналіз десятків і сотень сполук в одному зразку, 

що значно розширює метаболічне профілювання. Це забезпечує проведення 

якісного та кількісного аналізу рослинних гормонів навіть без наявності хімічних 

стандартів. 

В існуючих роботах (Dobrev, Kaminek, 2002; Müller, Munné-Bosch, 2011; 

Dobrev, Vankova, 2012; Tarkowská et al., 2014) докладно описані прийоми, які 

дозволяють визначати рівні цитокінінів, ІОК, АБК та інших рослинних гормонів 

у зразках з однієї проби рослинних тканин. Ми внесли певні модифікації до цих 

методик й розробили власний підхід, аналітична складова якого є цілком 
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оригінальною. Під час підготовки проб для аналізу на рідинному хроматографі з 

діодно-матричним детекторним блоком й одноквадрупольним мас-детектором 

(ВЕРХ/МС) до складу кислої фракції, що містить ІОК і АБК, також потрапляють 

гібереліни, зокрема ГК3 і ГК4, а також СК, кількість яких можна визначити. Наша 

методика (Коsakivska et al., 2020а, b; Щербатюк та ін., 2020, 2021) орієнтована на 

підготовку проб для аналізу на рідинному хроматографі з діодно-матричним 

детекторним блоком й одноквадрупольним мас-детектором (ВЕРХ/МС). Така 

комбінація аналітичного обладнання використовується у більшості вітчизняних 

наукових лабораторій біологічного профілю. 

 

 
Рис. 3.2. Сучасна аналітична система для профілювання фітогормонів укомплектована 

ультрависокоефективним рідинним хроматографом УВЕРХ, тандемним мас-

спектрометричним детектором з потрійним квадруполем МС/МС (UHPLC-MS/MS, QQQ-MS) 

і комп’ютером з керуючим програмним забезпеченням, що містить бібліотеки речовин 

 

Пробопідготовка. Для отримання достовірних, фізіологічно релевантних 

даних про вміст фітогормонів необхідно вжити запобіжних заходів під час збору 

проб. Вміст фітогормонів значно коливається впродовж доби, тому відбір проб 

слід проводити одночасно. Необхідно також враховувати, що рівень гормонів 

змінюється впродовж року. Так, зразки, відібрані взимку, суттєво відрізняються 

від весняних та літніх (навіть у випадку рослин, вирощених у вегетаційних 

камерах за однакової температури без доступу денного світла). Інтенсивність і 

спектр освітлення суттєво впливають на гормональний баланс, що ускладнює 

відтворення результатів експериментів у різних лабораторіях (Dobrev, 
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Vankova, 2012). Окремі тканини цілої рослини (листя, корінь, стебло) 

відрізняються за рівнем фітогормонів. Досить великі різниці їхньої концентрації 

спостерігаються між окремими листками і навіть всередині однієї листкової 

пластинки, вищий рівень цитокінінів мають частини, які активно ростуть, 

наприклад, у базальній частині листових пластинок однодольних рослин. 

Процедура аналізу включає відбір зразків, екстракцію фітогормонів, очищення 

отриманих екстрактів і їхнє кількісне визначення, а також приготування 

витратних матеріалів, реактивів і розчинів. 

Підготовка розчинників і стандартів. Екстракційний розчин містить 

метанол, воду подвійної дистиляції та мурашину кислоту у співвідношенні 

15 : 4 : 1 і зберігається за температури −20 °C у темряві. Для побудови 

калібрувальних таблиць і перевірки втрат методу хімічні стандарти фітогормонів 

розчинюють у суміші метанол : вода (1 : 1). Розчином для завантаження колонок 

твердотільної екстракції SPE була 1 М мурашина кислота (37,7 мл 99%-ї 

мурашиної кислоти доводять до 1000 мл водою подвійної дистиляції, pH 1,4). 

Перший розчинник для елюції – 100%-й метанол, другий – 0,35 М NH4OH (2,5 

мл 26%-го розчину гідроксиду амонію доводять водою подвійної дистиляції до 

100 мл, pH 11). Третій розчинник для елюції – лужний розчин метанолу (до 60 мл 

метанолу додають 2,5 мл 26%-го розчину гідроксиду амонію і доводять водою 

подвійної дистиляції до 100 мл). 

Відбір зразків. Нарізаний тонкими смужками рослинний матеріал 

зважують і одразу заморожують в рідкому азоті. Наважки рослинного матеріалу 

повинні становити 1,5–2,0 г сирої речовини. Вага кожного зразка визначається з 

точністю до ± 1% і повинна значно перевищувати мінімальну межу виявлення 

фітогормонів. У однодольних рослин Triticum aestivum L. і Triticum spelta L. та 

Secale cereale L. верхню третину листка для аналізу не потрібно брати, оскільки 

тканини там часто підсихають. Аналізують листові пластинки однакової фази 

онтогенезу. Кореневу систему ретельно відмивають від субстрату холодною 

водою, висушують фільтрувальним папером, зважують й заморожують в 

рідкому азоті. 

Екстракція. Мета екстракції – вивільнення сполук-аналітів з клітин 

рослинних тканин без хімічної руйнації. Співвідношення екстракційного 

розчинника і зразка 5 : 1, екстракцію проводять двічі. Слід уникати деградації 

аналітів, працюючи за низьких температур з екстракційним розчином, який 

містить значну частку органічного розчинника і має низький рН. Етап екстракції 

включав центрифугування, завдяки чому осаджувалися біополімери: целюлоза, 
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нуклеїнові кислоти та білки. Екстракцію проводять, дотримуючись наступної 

послідовності: 

1. Гомогенізують до дрібного порошку заморожений в рідкому азоті 

рослинний матеріал у керамічній ступці за допомогою товкачика. 

2. Переносять гомогенізований і заморожений зразок у пробірку для 

центрифугування, попередньо охолоджену в рідкому азоті. 

3. Промивають (двічі) ступки й товкачики п’ятьма об’ємами розчину для 

екстрагування охолодженого до −20 °C. Рідину після промивання ступки 

зливають до зразка в пробірку. Наприклад, 0,5 г сирої речовини 

зразка,промивають двома послідовними об’ємами по 2,5 мл 

екстракційного розчину. 

4. Пробірки зі зразками та екстракційним розчином переносять в морозильну 

камеру −20 °C на одну годину. 

5. Центрифугують при 15 тис. обертів на хвилину (RPM) протягом 30 хв (за 

0 °C). 

6. Супернатанти переносять в чисті пробірки. 

7. До осаду на дні центрифужних пробірок додавють п'ять об'ємів 

екстракційного розчину та перемішують. 

8. Залишають центрифужні пробірки на 30 хв при −20 °C. 

9. Центрифугують. Супернатанти об’єднують. 

10. Екстракти упарюють до водного залишку за умов зниженого тиску у 

вакуумному ротаційному випаровувачі (Typ 350P, Польща) за температури 

водяної бані +40 °С. 

Очищення отриманих екстрактів. Рослинні екстракти після видалення 

органічного розчинника містять велику кількість коекстрактивних речовин, які 

суттєво заважають подальшому визначенню. Метою очищення є видалення з 

екстракту якомога більшої кількості інтерферуючих речовин, при цьому важливо 

не втратити значної кількості цільових сполук-аналітів. Для очищення 

використовують два типи картриджів твердотільної екстракції (SPE). Перший – 

з твердою силікагелевою фазою SPE C18, Sep-PakPlus (Waters) застосовують як 

фільтр для видалення більшості ліпофільних речовин, фітогормони проходять 

крізь нього не затримуючись. У другому картриджі з фазою MCX (Waters) 

гормони міцно зв'язуються, а потім послідовно елююються відповідними 

розчинниками. Полютанти вимивають лужним буфером і водою подвійної 

дистиляції. Провівши необхідну послідовність дій, отримують дві фракції. 

Перша містить ІОК, АБК, СК, ГК. Друга, лужна фракція, містить цитокініни. 

Кожну фракцію упарюють до сухого залишку в колбах-концентраторах. 
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Кількісне визначення на ВЕРХ/МС. Аналітичне визначення 

фітогормонів проводили методом високоефективної рідинної хроматографії 

(ВЕРХ) на рідинному хроматографі Agilent 1200 LC з діодно-матричним 

детектором G1315В (США) у тандемі з одноквадрупольним мас-

спектрометричним детектором Agilent G6120A. Аналіз і обрахунок вмісту 

фітогормонів здійснювали за допомогою програмного забезпечення Agilent 

OpenLAB CDS ChemStation Edition (rev. C.01.09). Для проведення аналізу 

виконували наступні процедури: Сухі залишки кожної фракції в колбах-

концентраторах відновлювали 45%-вим розчином метанолу до об’єму 180–200 

мкл. Отриманий об’єм переносили в скляні конічні вставки об’ємом 250 мкл, 

встановлені у хроматографічні віали. Аліквоти проб вводили у прилад за 

допомогою автоматичного інжектора. 

Для кількісного визначення фітогормонів в отриманих зразках ми 

розробили чотири хроматографічні методи. Хроматографічне розділення 

здійснювалося в колонці Agilent ZORBAX Eclipse Plus C18 3 × 250 мм, 

наповненій ліпофільно-модифікованим сорбентом з розміром часток 5 мкм 

(оберненофазна хроматографія). Для кількісного визначення саліцилової 

кислоти використовували меншу хроматографічну колонку ZORBAX Eclipse 

Plus C18 Solvent Saver Plus 3 × 150 мм з розміром часток 3,5 мкм. 

Визначення вмісту ІОК та АБК. Аліквоти об’ємом 20 мкл розділяли 

системою розчинників (метанол, деіонізована вода, оцтова кислота в об’ємному 

співвідношенні 45,0 : 54,9 : 0,1) і проводили детекцію ІОК та АБК в УФ-області 

поглинання за аналітичної довжини хвилі 280 та 254 нм. Швидкість рухомої фази 

розчинників складала 0,7 мл ∙ хв-1. 

Визначення вмісту СК. Аліквоти об’ємом 10 мкл розділяли системою 

розчинників (ацетонітрил, ультрачиста вода, мурашина кислота в об’ємному 

співвідношенні 45,0 : 54,9 : 0,1) і проводили детекцію СК в УФ-області 

поглинання за аналітичної довжини хвилі 302 нм. Швидкість рухомої фази 

розчинників становила 0,5 мл ∙ хв-1. 

Визначення вмісту ГК3 і ГК4. Градієнтна елюція використовується для 

швидшого розділення суміші речовин з різною спорідненістю до стаціонарної 

фази колонок. Застосування градієнтних профілів дозволяє розділити більш 

складні матриці і значно скоротити час аналізу. 

Після розділення аліквот об’ємом 20 мкл системою розчинників 

(ацетонітрил, ультрачиста вода, оцтова кислота) у градієнтному режимі кількісно 

детектували ГК3 і ГК4 за сигналом мас-детектора. Оптимізований градієнтний 

профіль методу наведено в табл. 3.1. Швидкість рухомої фази розчинників 
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становила 0,5 мл ∙ хв-1. Урівноваження хроматографічної колонки після аналізу 

(функція Postrun) тривало 15 хв. 

 

Таблиця 3.1. Градієнтний профіль хроматографічного методу для кількісного 

визначення ГК3 і ГК4 

 

Час, хв Вода з 0,1% CH3COOH (%) Ацетонітрил (%) 

0 70 30 

20 30 70 

30 0 100 

 

Визначення складу та вмісту цитокінінів (5 речовин). Аліквоти проб 

фракції з цитокінінами об’ємом 20 мкл розділяли системою розчинників 

(метанол, вода, оцтова кислота), детекцію проводили за довжини хвилі 269 нм. 

Для елюції цитокінінів використовували ступінчасту градієнтну систему (табл. 

3.2). 

 

Таблиця 3.2. Градієнтний профіль хроматографічного методу для кількісного 

визначення цитокінінів 

 

Час, хв Вода з 0,5% CH3COOH (%) Метанол (%) 

0 63 37 

25 30 70 

35 0 100 

 

Тривалість розділення в градієнтному режимі становить 35 хв за 

стаціонарної швидкості потоку мобільної фази 0,5 мл ∙ хв-1, а врівноваження 

колонки після аналізу (Postrun) тривало 15 хв. 

Час виходу останнього аналіта 22 хв, однак загальна тривалість методу дещо 

більша. Подовження методу до 35 хв потрібне для аналізу цитокінінів у зразках, 

приготованих з рослинного матеріалу, який має складну матрицю. У цьому 

випадку важливо вимити речовини-забруднювачі з колонки потоком 100%-го 

метанолу. 

Як стандарти для побудови калібрувальних таблиць використовували 

немічені ІОК, АБК, СК, ГК3 та ГК4, транс-зеатин-О-глюкозид (т-ЗГ), транс-

зеатин (т-З), транс-зеатинрибозид (т-ЗР), ізопентеніладенін (іП) та 

ізопентеніладенозин (іПА) виробництва фірми Sigma-Aldrich (США). В окремих 

випадках для ідентифікації використовували внутрішні стандарти. 
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Наявність речовин-аналітів у пробах визначали за комбінованого режиму 

роботи мас-спектрометра «multimode» (електроспрей та хімічна іонізація за 

атмосферного тиску) для ІОК, АБК, СК, ГК3, ГК4 за негативної полярності 

іонізації молекул речовин-аналітів і позитивної – для цитокінінів. За сигналом 

мас-детектора можна також розрахувати кількість речовин-аналітів у пробі. Для 

кількісного аналізу ГК3 і ГК4 використовували сигнал мас-детектора MSD SIM 

за налаштування сканування приладом показників m/z 345 [346-H]- та m/z 331 

[332-H]-. 

В окремих випадках визначали концентрацію цитокінінів у пробах за 

допомогою мас-детектора. Для цього використовували пропорційний метод 

калібрування. Його суть полягає в математичному порівнянні реакції невідомої 

концентрації з реакцією відомої (стандартної) концентрації, щоб визначити, яка 

кількість сполуки присутня. Під реакцією мається на увазі площа піку, що 

формується за сигналом мас-спектрометричного детектора (рис. 3.3). Ми 

використовували розчин хімічних стандартів цитокінінів у концентрації 1,6 нг 

кожної речовини в 1 мкл. 

 

 
Рис. 3.3. Хроматограма розділення хімічних стандартів цитокінінів (А) і паралельний запис 

сигналу тандемного мас-детектора в режимі реєстрації окремих іонів згідно до заданої в 

інтерфейсі часової таблиці (Б). Об’єм аліквоти – 20 мкл, 1,6 нг кожної речовини в 1 мкл, 

детектування за довжиною хвилі 269 нм 
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3.2. Гормональний гомеостаз злаків за дії високої температури 

 

Дослідження впливу змін клімату на продуктивність культурних рослин 

належить до провідних завдань сучасної біологічної науки. Однією з головних 

причин підвищеного інтересу до цієї проблеми є помітна зміна інтенсивності та 

частоти багатьох кліматичних явищ, значні перепади добових температур, 

кількість опадів тощо (Ummenhofer, Meehl, 2017). Зміни клімату індукують низку 

біотичних та абіотичних стресів, які негативно впливають на ріст, розвиток і 

продуктивність аграрних культур (Raza et al., 2019b). Аналіз, проведений 

науковцями Інституту космічних досліджень імені Годдарда NASA (GISS), 

показав, що починаючи з 1975 року швидкість потепління складає приблизно 

0,15–0,20 °C кожні десять років (Lorenz et al., 2019). Температура – один із 

головних факторів навколишнього середовища, що впливають на ріст, розвиток і 

врожайність рослин. Температура вища за оптимальну індукує тепловий стрес, 

негативно впливає на метаболізм, пригнічує фотосинтетичну активність і 

посилює дихання, гальмує ріст і врожайність (Prasad et al., 2008). 

Культурні злаки стали предметом інтенсивних досліджень, спрямованих на 

розуміння фізіологічних, молекулярних і генетичних механізмів формування 

реакції на тепловий стрес, пошук шляхів уникнення або пом’якшення 

негативних наслідків дії високої температури (Janni et al., 2020). Такі зернові 

культури, як рис (Oryza sativa L.), пшениця (Triticum aestivum L.), кукурудза (Zea 

mays) L., ячмінь (Hordeum vulgare L.) і просо (Pennisetum glaucum L.), 

задовольняють потреби у виробництві харчових продуктів для більшості 

населення земної кулі (Jeyasri et al., 2021). За дії високої температури 

скорочується тривалість усіх етапів онтогенезу, пригнічується фотосинтетична 

активність, порушується стабільність клітинних мембран, зменшується вміст 

води та індекс площі листків, загальна біомаса та врожайність пшениці 

(Narayanan, 2018). 

Фітогормони – сигнальні біомолекули різної структури та фізико-хімічних 

властивостей, діють у наномолярних концентраціях і регулюють більшість 

фізіологічних і метаболічних процесів рослин на всіх етапах життєвого циклу від 

проростання насіння до старіння. Тому визначення їхнього вмісту і сайтів 

локалізації має важливе значення для пошуку шляхів управління швидкістю 

росту і розвитку та формування стресостійкості (Sabagh et al., 2022). 

Фізіологічні та генетичні дослідження виокремили функціональну 

активність різних класів гормонів і виявили складну мережу перехрещування й 

взаємодії їхніх сигнальних шляхів (Vanstraelen, Benková, 2012). АБК, активність 
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якої визначається концентрацією й розподілом у клітинах, тканинах та органах 

рослини, належить до головних регуляторів стресових реакцій (Войтенко, 

Косаківська, 2016). За нормальних умов гормон індукує вегетативний ріст, 

контролює процеси проростання насіння, обпадання листків і дозрівання плодів 

(Косаківська та ін., 2019б; Vishwakarma et al., 2017). За дії стресу концентрація 

гормону стрімко зростає, відбувається гальмування метаболічних процесів і 

росту в цілому. Це сприяє збереженню життєздатності за несприятливих умов і 

забезпечує подальше відновлення після припинення стресового впливу. 

Індуковане гормоном закриття продихів відбувається одразу від початку дії 

стресора (Geiger et al., 2011). Регулюючи продихову активність, АБК посилює 

стресостійкість (Zhang et al., 2016; Islam et al., 2018), контролює поглинання і 

транспорт води кореневою системою (Maurel et al., 2015), активує ріст коренів та 

уповільнює пагонів (McAdam et al., 2016). АБК відіграє ключову роль в 

акумуляції білків теплового шоку (HSP). Експресія факторів синтезу 

низькомолекулярних HSP 17.2, HSP 17.4 і HSP 26 індукується АБК-сигналінгом 

за дії теплового стресу (Hu et al., 2010b). Завдяки перехрещуванню сигнальних 

шляхів АБК і HSP 70 забезпечується захист нативних білків і ферментів від 

неправильного згортання та протеолізу (Hu et al., 2010a; Li et al., 2014). Показано, 

що індукована АБК оверекспресія генів TaHsfC2a-B за дії високої температури 

призводить до активації генів TaHSP70d і TaGalSyn, внаслідок чого поліпшується 

теплостійкість зерна пшениці під час наливу (Hu et al., 2018). Здатність AБК 

переміщуватись на великі відстані дозволяє гормону виконувати роль 

критичного месенджера стресу. Транспорт АБК є дифузним процесом, який 

відбувається з участю АБК транспортерів при проходженні крізь біологічні 

мембрани (Boursiac et al., 2013). Вважають, що при стресах за участі АБК 

здійснюється зв’язок між коренем та стеблом, регулюється транспорт води та 

солей, а при взаємодії з іншими сигнальними молекулами гормон контролює 

комунікацію між органами (Xuetal., 2013; Vishwakarma et al., 2017).  

ІОК бере участь у регуляції поділу, подовження й диференціації клітин, 

фото- та гравітропізмі, апікальному домінуванні, ембріо-, органо- та 

морфогенезі, розвитку кореневої системи (Teale et al., 2006; Sosnowski et al., 

2023). Ауксини задіяні у регуляції росту і розвитку злаків за дії абіотичних 

стресорів (Voytenko, Kosakivska, 2025). Молоді листки характеризуються 

найвищим вмістом і біосинтезом гормону (Ljung et al., 2001) і є найбільш 

чутливими до дії стресорів (Mühlenbock et al., 2008). Пригнічення експресії генів 

YUC2 та YUC6 біосинтезу гормону за дії високої температури призводило до 

зменшення вмісту ауксинів у пиляках рослин ячменю і арабідопсису, що 
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гальмувало розвиток пилку. Екзогенне ж застосування ІОК запобігало розвиткові 

чоловічої стерильності. Зниження вмісту ауксинів у відповідь на підвищення 

температури загалом негативно впливало на ріст і розвиток рослин, знижуючи 

їхню врожайність (Sakata et al., 2010). Показано, що за дії стресорів локалізація 

ауксину змінювалась завдяки зміні вектору та інтенсивності транспортних 

потоків (Shibasaki et al., 2009). В умовах дегідратації були зафіксовані зміни в 

експресії багатьох, пов'язаних з ауксином, генів (Jain, Khurana, 2009). В окремих 

роботах повідомлялось про перехрещування сигнальних шляхів АБК та ІОК за 

теплового стресу. Завдяки взаємодії гормонів регулювались ростові процеси, що 

сприяло адаптації (Du et al., 2012). Зменшення вмісту ІОК і зростання кількості 

АБК спостерігалось у колосках рису за теплового стресу (Tang et al., 2008). 

Водночас показано, що після теплового стресу за попередньої фоліарної обробки 

рослин рису цитокініновими препаратами у колосках зростав рівень ІОК, тоді як 

вміст АБК зменшувався. Однак у рисових зернах вміст обох гормонів 

збільшувався (Yang et al., 2016a). За оверекспресії гена OsGH3-2, який знижує 

вміст вільної ІОК, зменшувалась посухостійкість і рівень ендогенної АБК у 

рослинах рису (Du et al., 2012). Зміни у вмісті ендогенних ауксинів у відповідь на 

різні абіотичні стреси зафіксовані в багатьох сільськогосподарських рослин. 

Вони обумовлені змінами у спрямованості та інтенсивності транспортних 

потоків ауксинів на великі відстані (з пагонів до коренів) та короткі – у місцях 

локального біосинтезу, а також метаболічними перетвореннями (Korver et al., 

2018). 

Гібереліни утворюють найчисельніший клас рослинних гормонів. Вони 

нараховують більше 130 ізоформ, синтезуються в пластидах, контролюють 

процеси проростання насіння, цвітіння, детермінації статі, подовження стебла і 

ріст листків, затримують старіння (Colebrook et al., 2014; Gantait et al., 2015). 

Фізіологічна активність притаманна лише окремим гібереловим кислотам (ГК1, 

ГК3, ГК4, ГК5, ГК6 і ГК7), інші ж належать до їхніх попередників і неактивних 

форм (Sponsel, Hedden, 2010). Гібереліни регулюють процеси росту та розвитку 

рослин, впливаючи на деградацію DELLA білків, родини репресорів 

транскрипції, які інгібують проліферацію та розтягування клітин (Vera-Sirera et 

al., 2016). Гібереліни задіяні у формуванні реакції на стресові впливи. При цьому 

вони взаємодіють з іншими гормонами (Castro-Camba et al., 2022a). Зменшення 

вмісту гіберелінів за дії стресорів обмежує ріст, водночас посилений біосинтез 

гормону запобігає можливим пошкодженням (Colebrook et al., 2014; Kosakivska, 

Vasyuk, 2021). Експресія генів, які кодують задіяні в синтезі гіберелінів 

ферменти, регулюється зовнішніми сигналами. Так, за дії негативних чинників 
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синтез гіберелінів пригнічується завдяки експресії генів GA2ox, які кодують 

GA2-інактивуючі ензими, а також гена DELLA RGL3, який кодує супресор росту 

(Colebrook et al., 2014; Minguet et al., 2014). Гібереліни позитивно впливають на 

ріст коренів. Показано, що HDT1/2 (гістондеацетилази) опосередковує ранній 

перехід від поділу клітин кореневого кінчику до їхнього розтягування завдяки 

пригніченню транскрипції гена GA2ox2 – інактиватора гіберелінів (Li et al., 2017). 

Гіберелін-чутливий ген карликовості Ddw1 негативно не впливав на глибину 

вкорінення, довжину кореня та загальний розподіл довжини кореня рослин жита 

в польовому досліді. Загалом рослини жита не втрачали ознак розгалуженої 

кореневої системи за умови інтрогресії гена Ddw1 (Kottmann et al., 2023).  

СК – фітогормон фенольної природи, задіяна в регуляції росту й розвитку, 

фотосинтезу, дихання, транспірації (Janda et al., 2014), підвищує стійкість рослин 

до широкого спектру абіотичних стресорів (Kang et al., 2014; Jayakannan et al., 

2015; Kosakivska, Shcherbatiuk, 2025). Механізм формування стресостійкості за 

дії СК достатньо складний і до кінця не з’ясований. Він включає продукування 

осмолітів, індукцію антиоксидантної активності та взаємодію з іншими 

гормонами (Khan et al., 2015). Накопичення ендогенної СК у відповідь на водний 

стрес спостерігали у рослинах сої (Hamayunetal., 2010), за умови сольового 

стресу – в рослинах кукурудзи (Elhakem, 2020), забруднення важкими металами 

(цинком) – в озимої пшениці (Kosakivska et al., 2019). Слід зазначити, що вміст 

СК у рослинах за абіотичних стресів зазвичай зростає повільніше, ніж 

посилюється генерація активних форм кисню (АФК) (Larkindale, Huang, 2004), 

через що СК розглядають як сигнальну молекулу, задіяну в сприйнятті, посиленні 

та трансдукції первинних АФК-сигналів. За дії стресорів включаються 

молекулярні механізми взаємодії гіберелінів і саліцилової кислоти. На прикладі 

насіння арабідопсису чітко встановлено взаємозв’язок між синтезом гіберелінів 

і СК через DELLA протеїни. Показано, що з участю генів родини GASA (Giberellic 

Acid Stimulated) експресуються гени СК – ics1 та npr1, які беруть участь у 

біосинтезі гормону (Alonso-Ramírezetal., 2009). 

Цитокініни – похідні аденіну, належать до ключових компонентів 

фітогормонального комплексу (Веденичова, Косаківська, 2017, 2020). Вони 

контролюють поділ клітин (Schaller et al., 2014), формування меристем (Kurepa et 

al., 2019), фотосинтез і старіння (Hönig et al., 2018), поглинання макро- і 

мікроелементів (Pavlů et al., 2018), відповідь на дію біотичних та абіотичних 

стресорів (Bielach et al., 2017; Cortleven et al., 2019; Веденичова та ін., 2021). 

Цитокініни утворюються в кінчиках коренів, незрілих плодах і насінні. Ці 

гормони відповідають за стимуляцію росту бічних пагонів, стимулюють 



43 

 

цитокінез (Sosnowski et al., 2023). Вони існують у формі вільних основ 

(ізопентеніладенін, дигідрозеатин, цис-зеатин і транс-зеатин), які є активними і 

зв’язуються з рецепторами, а також їхніх неактивних рибозидів і нуклеотидів. 

Гомеостаз цитокінінів у клітині підтримується поєднанням процесів біосинтезу 

(фермент ізопентенілтрансфераза (ІРТ)), деградації (фермент цитокініноксидаза 

(СКХ), який розщеплює бічний ланцюг ізопреноїдних цитокінінів) та кон’югації 

(фермент О-глюкозилтрансфераза (ZOG), який каталізує утворення мобільних О-

глюкозидів і β-глюкозидаза (GLU), яка розщеплює останні) (Frébort et al., 2011). 

У більшості рослин домінуючими формами цитокінінів є транс-З та його 

похідні, вони проявляють найвищу активність у біотестах, мають найбільшу 

спорідненість до рецепторів, максимуми їхнього вмісту співпадають із періодами 

інтенсивного росту (Sakakibara, 2006; Веденичова, Косаківська, 2016; Romanov 

et al., 2018). Вплив високої температури на баланс цитокінінів досліджено 

здебільшого в репродуктивний період розвитку злаків (Cheikh, Jones, 1994; Wang 

et al., 2020). Зокрема, у суцвіттях і коренях рису за дії високої температури 

зменшувався вміст активних форм цитокінінів (Wu et al., 2017). За нетривалого 

теплового стресу зафіксовані зміни у вмісті окремих форм цитокінінів у рослин 

пшениці та арабідопсису (Farkhutdinov et al., 1997; Todorova et al., 2005). За 

температури +40 оС упродовж перших 30 хв рівень активних форм цитокінінів 

зростав у листках і зменшувався в коренях, а після 2 год стресу вміст цитокінінів 

у листках та коренях арабідопсису знизився (Dobrá et al., 2015). 

Ми проаналізували вплив теплового стресу (+40 °С, 2 год) на ростові 

характеристики 14-добових рослин Triticum aestivum L. сорту Подолянка, 

Triticum spelta L. сорту Франкенкорн і Secale cerealе L. сорту Богуславка та 21-

добових рослин після відновлення (табл. 3.3). Короткотривала дія високої 

температури суттєво не вплинула на лінійні показники надземної частини і 

коренів 14-добових рослин досліджуваних видів. Певні зміни відбулись у 

накопиченні біомаси і сухої маси органами злаків. Так, біомаса та суха маса 

надземної частини стресованих рослин спельти Франкенкорн зменшилась на 

10,7% та 12,4% відповідно. У пшениці Подолянка зросли показники сухої маси 

надземної частини, тоді як біомаса практично не змінилась. У рослин жита 

Богуславка достовірних змін у показниках біомаси та сухої маси надземної 

частини не зафіксовано. 

У коренях стресованих рослин пшениці Подолянка біомаса та суха маса 

зросли на 33,3% та 12,2% відповідно, тоді як у стресованих рослин спельти 

Франкенкорн і жита Богуславка ці показники не зазнали суттєвих змін. На 21-шу 

добу вегетації за морфометричними показниками відновлені стресовані рослини 
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поступалися контрольним. Гальмування росту надземної частини відбулась у 

всіх досліджуваних злаків. Зменшились на 9,1% суха маса надземної частини 

пшениці Подолянка та на 7,2% біомаса надземної частини жита Богуславка (табл. 

3.3). 

Таблиця 3.3. Морфофенологічна характеристика рослин Triticum aestivum L. 

сорту Подолянка, Triticum spelta L. сорту Франкенкорн і Secale cerealе L. сорту 

Богуславка після теплового стресу (+40 °С, 2 год) та в період відновлення 

 

Варіант 

Надземна частина Корені 

Висота, см 
Біомаса/суха 

маса, мг 
Довжина, см 

Біомаса/суха 

маса, мг 

Triticum aestivum L. сорт Подолянка 

Контроль, 

14 доба 
29,6±1,2 

165,2±4,61 

20,8±0,62 
7,8±0,4 

47,7±2,61 

8,2±0,92 

Тепловий стрес, 

14 доба 
30,8±1,5 

167,8±8,41 

23,0±0,72 
7,9±0,4 

63,6±3,21* 

9,2±0,72 

Контроль, 

21 доба 
41,0±2,2 

323,5±16,21 

50,8±2,52 16,6±0,8 
98,7±4,91 

14,7±0,7b 

Відновлення, 

21 доба 
39,0±2,1 

312,2±15,61 

42,1±2,12 14,9±0,7 
81,5±4,11 

11,4±0,72 

Triticum spelta L. сорт Франкенкорн 

Контроль, 

14 доба 
29,1±1,6 

192,0±9,61 

26,6±0,72 12,3±0,6 
112,6±5,61 

24,5±1,12 

Тепловий стрес, 

14 доба 
28,9±1,4 

171,5±8,61* 

23,3±0,72 
12,1±0,6 

106,5±5,31 

25,2±1,22 

Контроль, 

21 доба 
44,0±2,2 

231,7±11,61 

43,4±0,62 15,4±0,8 
146,4±7,31 

25,3±0,82 

Відновлення, 

21 доба 
42,8±2,1 

229,0±11,51 

42,0±0,62 
12,5±0,6 

128,1±6,41* 

24,4±1,22 

Secale cerealе L. сорт Богуславка 

Контроль, 

14 доба 
18,3±0,9 

119,2±6,01 

14,6±0,72 
15,0±0,8 

121,3±6,31 

15,3±0,82 

Тепловий стрес,  

14 доба 
18,3+0,9 

124,4±6,11* 

13,8±0,72 
15,1±0,8 

124,9±6,21* 

15,7±0,62 

Контроль, 

21 доба 
23,7±1,2 

150,1±7,51 

21,2±1,12 
17,2±0,9 

135,0±6,81 

17,7±0,92 

Відновлення, 

21 доба 
22,6±0,9 

139,3±7,01* 

20,5±0,42 
17,4 ±0,9 

137,2±6,91 

17,9±0,92 

Примітка: 1 – біомаса органу; 2 – суха маса органу. * – Достовірна відмінність при P ≤ 0,05 порівняно з 

контролем. Представлені дані є середніми значеннями ± SE, n = 90. 
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У рослин спельти Франкенкорн показники біомаси та сухої маси надземної 

частини відповідали показникам контрольних рослин. Довжина коренів 21-

добових відновлених стресованих рослин пшениці та спельти була менш за 

контрольні на 10% та 18% відповідно, тоді як довжина коренів відновлених 

стресованих рослин жита досягла показників контрольних рослин (табл. 3.3). 

Отже, серед 14-добових досліджуваних злаків найбільш стійкою до 

теплового стресу виявилась пшениця Подолянка, а найбільш вразливою – 

надземна частина спельти Франкенкорн. Успішне відновлення відбулось у 

кореневій системі 21-добових рослин жита Богуславка і надземній частині 

спельти Франкенкорн.  

Зафіксовані морфофенологічні зміни відбувались на тлі перебудови 

фітогормонального балансу (Kosakivska et al., 2021). У контрольних умовах АБК 

та ІОК домінували в надземній частині 14- та 21-добових рослин спельти 

Франкенкорн, натомість у пшениці Подолянка АБК домінувала в надземній 

частині, тоді як ІОК у коренях. У 14-добових рослин жита Богуславка в 

контрольних умовах ІОК локалізувалась у надземній частині, де її вміст був у 1,2 

раза вищим, ніж у коренях. Рівні АБК у досліджуваних органах були практично 

однаковими. За короткотривалого високотемпературного стресу в рослин 

пшениці Подолянка, спельти Франкенкорн та жита Богуславка характер 

накопичення АБК та ІОК мав однакову спрямованість: вміст АБК зростав, а ІОК 

зменшувався. АБК та ІОК локалізувались у надземних органах досліджених 

злаків за виключенням ІОК у пшениці. Не зважаючи на близький кількісний вміст 

АБК та ІОК у всіх трьох видів, інтенсивність змін ендогенного вмісту цих 

гормонів за дії високої температури була різною. У період відновлення 

спостерігалось подальше накопичення АБК в органах пшениці та зменшення у 

спельти й жита з домінуванням гормону в надземній частині. Вміст АБК у всіх 

органах рослин пшениці, надземній частині жита та коренях спельти, що 

відновлювалися, був вище за контроль. Натомість у надземній частині спельти 

рівень АБК не досягав контролю, а в коренях жита був на його рівні. Вміст ІОК 

після припинення стресу збільшився лише у пшениці, але не досягав контролю. 

При цьому рівні ІОК у спельти та жита продовжували зменшуватись і також не 

досягали контролю. У відновлювальний період ІОК накопичувалась у надземних 

частинах всіх злаків (рис. 3.4). 

У пшениці вміст СК був на порядок вищим ніж у спельти, тоді як 

накопичення ГК3 було кількісно однаковим. Обом спорідненим видам пшениць 

властиве переважання СК у надземній частині, а ГК3– у коренях. В органах 

контрольних рослин жита також виявлено домінування СК. При цьому вміст 
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гормону поступався відповідному показнику у пшениці, проте переважав 

показник у спельти. ГК3 і ГК4 домінували у коренях контрольних рослин жита, і 

перевищували відповідні показники надземної частини у 14-добових рослин 

удвічі та в 1,8 раза відповідно. Високотемпературний стрес в цілому негативно 

вплинув на накопичення гіберелінів в органах 14-добових рослин пшениці, 

спельти та жита. При цьому превалювання ГБ спостерігалось у коренях пшениці 

та жита, а у спельти – в надземній частині. У період відновлення у пшениці рівні 

ГБ не досягали, а у спельти переважали показники контролю. У жита вміст 

гормонів відповідав контролю. При цьому гормони акумулювались у коренях 

всіх злаків. Виявлено специфічні зміни у накопиченні і розподілі СК в органах 

досліджуваних злаків після дії високої температури: у спельти та жита вміст 

гормону збільшився, тоді як у пшениці він зменшився. Сайтом акумуляції СК 

були надземні органи злаків, де її вміст у пшениці та спельти був майже втричі, а 

у жита вдвічі вищим, ніж у коренях. На 21-шу добу після відновлення кількість 

СК у пагонах і коренях спельти була втричі вищою за контроль. Натомість у 

надземній частині пшениці рівень СК був нижче, а в коренях на рівні контролю. 

У надземній частині жита СК суттєво превалювала над контролем, а в коренях не 

досягала його показників. При цьому сайтом акумуляції СК у всіх видів злаків 

були надземні частини, вміст якої у пшениці та спельти майже втричі, а у жита 

вдвічі переважали над коренями (рис. 3.4). 

Отримані нами результати дозволяють зробити висновок, що зміни у балансі 

й локалізації АБК, ІОК, гіберелінів та СК в органах пшениці, спельти та жита 

свідчать про участь цих гормонів у формуванні стратегії адаптації до дії високої 

температури. 

 



  

  
Рис. 3.4. Вплив теплового стресу (+40 °С, 2 год) на накопичення ендогенних фітогормонів у надземній частині та коренях 14-добових рослин Secale 

cereale L. сорту Богуславка, Triticum aestivum L. сорту Подолянка та Triticum spelta L. сорту Франкенкорн та у 21-добових рослин після відновлення, 

% до контролю. Озима пшениця сорту Подолянка – посухостійка, озиме жито сорту Богуславка – холодостійке, середньо посухостійке, спельта сорту 

Франкенкорн – екологічно пластична, морозостійка 

 



У стресованих і відновлених рослин відбулись складні перебудови 

цитокінінових гормонів, характер яких залежав від виду та органу рослини (рис. 

3.5). 

 

 

 

 
Рис. 3.5. Вміст і розподіл ендогенних цитокінінів в органах 14-добових рослин Triticum 

aestivum L. сорту Подолянка (А), Triticum spelta L сорту Франкенкорн (Б) та Secale сerealeL. 

сорту Богуславка (В) після теплового стресу (+40 °С, 2 год) та на 21-шу добу після відновлення, 

нг/г сирої речовини. Позначення (тут і далі в рисунках): т-З – транс-зеатин, т-ЗОГ – транс-

зеатин-О-глюкозид, т-ЗР – транс-зеатинрибозид, іП – ізопентеніладенін, іПА – 

ізопентеніладенозин 

 

Збільшення загального вмісту цитокінінів у надземній частині та коренях 

пшениці відбувалось за рахунок накопичення т-ЗОГ та іР (рис. 3.5, А). У спельти 

тепловий стрес призвів до зменшення сумарного вмісту цитокінінів більше ніж 
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удвічі. В надземній частині це відбулось переважно за рахунок т-ЗОГ та т-ЗР, 

тоді як у коренях за рахунок т-ЗОГ. Водночас у коренях рівні т-З та іП 

продовжували зростати (рис. 3.5, Б). У жита висока температура викликала 

зменшення вмісту цитокінінів у коренях і збільшення у надземній частині через 

зміни у накопиченні зеатинових форм гормону, серед яких домінував т-ЗР. У 

період відновлення рівні цитокінінів у пшениці досягали контрольних 

показників завдяки накопиченню т-ЗОГ у коренях. Натомість у надземній 

частині сумарний вміст цитокінінів не досяг контролю. Рівні всіх форм, за 

виключенням іП, були нижче контрольних. У відновлених рослинах спельти та 

жита кількість цитокінінів не досягла показників контролю (рис. 3.5, В). 

Отримані результати виявили риси подібності та відмінності в реакції 

фітогормональної системи споріднених видів пшениць та жита на 

короткотривалий тепловий стрес і засвідчили причетність ендогенних 

фітогормонів до формування стратегії адаптації злаків. 
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3.3. Гормональний гомеостаз злаків за дії низької  

позитивної температури 

 

Щороку 85% посівних площ пшениці у світі зазнають весняних 

заморозків, що зазвичай відбувається в березні–квітні на ранній стадії розвитку 

(Yue et al., 2016). Низькі температури негативно впливають на вегетативний і 

репродуктивний ріст пшениці, затримують проростання зернівок й зумовлюють 

часткову загибель рослин через порушення у розвитку зародку. У паростках 

зменшуються кількість і швидкість поглинання води й поживних речовин, що 

призводить до зневоднення клітин, порушення процесів живлення і спричиняє 

втрати врожаю на 10–30% (Ji et al., 2017; Wu et al., 2023). За холодового стресу 

в рослинах пшениці змінюється інтенсивність фотосинтезу, дихання та 

транспорту речовин (Hassan et al., 2021). Охолодження індукує продукування 

активних форм кисню (Foyer et al., 2002) і перекисне окислення ліпідів (Thakur 

et al., 2010). В перші години дії низької позитивної температури на рослину 

відбувається структурно-функціональна реорганізації фотосинтетичного та 

енергетичного апарату (Babenko et al., 2019a, b). 

Рослини пшениці, які зазнають ранніх весняних холодів, мають краще 

виживання, вищу фотосинтетичну активність, більш стійкі до пізнього 

весняного заморозку, що призводить до менших втрат урожаю (Li et al., 2014). 

Одним із критичних етапів онтогенезу пшениці є стадія 3-х листків, коли 

відбувається перехід від живлення за рахунок запасів зернівки до засвоєння 

поживних речовин ззовні через кореневу систему. Для високопродуктивних 

сучасних генотипів пшениці, локальних видів і диких попередників притаманні 

специфічні температурні оптимуми та окремі анатомо-морфологічні й 

біохімічні відмінності. З’ясувалось, що сучасні сорти пшениці порівняно з 

дикими видами мають вищу стійкість фотосинтетичного апарату, ширші 

діапазони оптимальних температур, що дозволяє підтримувати нормальний ріст 

рослин упродовж всього вегетаційного сезону і, в результаті, сприяє 

підвищенню врожайності (Brestic et al., 2018). 

Вивчення механізмів формування холодостійкості має важливе значення для 

подальшої оптимізації вирощування й виробництва сільськогосподарських 

культур (Soualiou et al., 2022). Ключову роль у надбанні холодостійкості 

відіграють фітогормони. Вони є компонентами складних сигнальних каскадів, які 

регулюють ріст та ініціюють морфологічні й молекулярні адаптивні зміни, що 

підвищують холодостійкість (Tian et al., 2022). Про зменшення довжини, біомаси, 

розгалуженості коренів, площі кореневої поверхні у різних зернових культур 
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повідомлялось в роботі Hussain et al. (2018). Відзначалось, що у рослинах 

кукурудзи за дії низької температури сповільнювався ріст і змінювалась 

морфологічна будова первинного кореня (Hussain et al., 2020), знижувалось 

накопичення біомаси коренями (Frey et al., 2020), зменшувався кут розгалуження 

між первинним і бічними коренями (Nagel et al., 2009). Повідомлялось, що корені 

чутливих до холоду генотипів рису характеризувались меншими показниками 

сухої маси, мали більш короткі й тонкі кореневі волоски, що негативно впливало 

на площу коренів (Rativaetal., 2020). Дослідженнями Wu et al. (2023) 

продемонстровано, що холодове праймування (10°С : 6°С, 1 доба) підвищувало 

холодостійкість проростків пшениці. Найбільший фенотип стійкості був 

зафіксований через 9 днів після праймування. Холодова обробка індукувала 

високу фотохімічну здатність гасіння фотосистеми ІІ, збільшення вмісту 

фотосинтетичних пігментів і посилення біосинтезу світлозбиральних протеїнів. 

Стресова пам’ять, індукована праймінгом, проявлялась у 3–4 листках на 6–12-ту 

добу після відновлення та з часом її ознаки поступово зменшувались. 

Зміни в динаміці ростових процесів відбувались на тлі перебудов у балансі 

ендогенних фітогормонів. Серед рослинних гормонів АБК є головним 

регулятором стійкості рослин до абіотичних стресів, що координує різноманітні 

реакції, пов’язані з пристосуванням та адаптацією (Sreenivasulu et al., 2012). 

Гормон відіграє важливу роль в індукції стійкості до дії низької температури. Guo 

et al. (2023) показали, що дефіцит АБК пригнічував реакцію на дію низької 

температури (0 °C, 24 год) рослин ячменю на ранніх етапах вегетації (фаза 3-х 

листків), порушуючи ультраструктуру хлоропластів, змінюючи метаболізм 

крохмалю та сахарози, знижуючи активність антиоксидантних ензимів та 

індукуючи зміни у гормональній мережі. На 14-добових рослинах холодостійкого 

сорту ячменю було показано, що за дії низької температури (+5 оС, 1 доба) значно 

зростав вміст ендогенної АБК (Ahres et al., 2023). Відомості щодо ролі АБК у 

пом’якшенні ефектів холодового стресу та підвищенні холодостійкості 

базуються переважно на результатах, отриманих за екзогенного застосування 

гормону. Зокрема, після обробки рослин нуту (Cicer arietinum L.) екзогенною 

АБК значно пом’якшився негативний вплив холодового стресу на показники 

відносного вмісту води в листках та вміст хлорофілу (Kumar et al., 2008). У роботі 

Huangetal. (2017) показано, що за умов тривалого холодового стресу (+4 оС, 7 діб) 

після обробки АБК зменшувався вміст АФК та зростав рівень хлорофілу а у 

рослинах бермудської трави Cynodon dactylon (L). Pers (родина Poaceae). 

Екзогенна АБК сприяла посиленню холодостійкості надземної частини і коренів 

холодостійкого сорту озимої пшениці шляхом підвищення активності 
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антиоксидантних ензимів (Yu et al., 2020). Про інтенсивне накопичення 

ендогенної АБК у надземній частині озимої і ярої пшениць за дії низької (+4 °С) 

температури повідомлялось в роботі Kosova et al. (2012). Авторами було 

показано, що реакція озимої пшениці виявилась більш швидкою і виразною, ніж 

ярої пшениці. Разом із зростанням рівня АБК збільшувався вміст протекторного 

протеїну дегідрину WCS120, проте за більш тривалої дії стресу (3–7 діб) 

концентрація АБК знижувалась.  

Як сигнальна сполука, пов’язана зі стресом, СК прямо чи опосередковано 

впливає на різні процеси росту та розвитку рослин. СК відіграє важливу роль в 

індукції холодостійкості пшениці, регулюючи утворення АФК (Wang et al., 2018). 

УАБК-дефіцитних мутантів ячменю вміст СК за дії низької температури 

зменшувався, але був вищим, ніж у дикого генотипу Steptoe (Guo et al., 2023). У 

листках озимої пшениці після тривалої дії холоду (+4 °C, 3 доби) зростав рівень 

ендогенної СК (Kosova et al., 2012). Проте у проростках толерантного та 

чутливого сортів ячменю після тривалого холодового стресу (+5/7 °C, 3 доби) 

вміст ендогенної СК зменшувався (Mutlu et al., 2015). 

Гібереліни відіграють вирішальну роль в інтеграції реакцій рослин на 

активовані абіотичними стресорами сигнали інших фітогормонів (Achard et al., 

2006). Важливо, що експресія генів, які кодують синтез ензимів, каталізаторів 

основних етапів синтезу ГБ, зазвичай регулюється з участю екологічних 

сигналів, через що вміст ендогенних ГБ стає надзвичайно чутливим до змін 

зовнішнього середовища (Colebrook et al., 2014). У роботі Kosova et al. (2012) 

показано, що за дії низької температури у пагонах і коренях озимої та ярої 

пшениць рівні біологічно активних гіберелінів знижуються, а рівні неактивних 

гідроксильованих форм зростають, що призводить до швидкого пригнічення 

росту. Холодовий стрес сприяв зниженню рівнів ендогенних ГК4 і ГК7 у пиляках 

рису і не впливав на вміст їхнього попередника ГК12, що було обумовлено 

зниженням активності GA20ox3 та GA3ox1 (Sakata et al., 2014). За низької 

температурі гальмувався ріст листків пшениці і накопичувались активні ГБ, які 

стимулювали видовження клітин. За цих умов збільшувався поріг чутливості до 

дії ГБ (Tonkinson et al., 1997). Встановлено, що в умовах холоду передусім 

пошкоджується клітинна мембрана. При цьому вміст ГК3 знижувався і зростала 

відносна електропровідність тканин. Рівень АБК збільшувався, а з цим і 

співвідношення АБК/ІОК та АБК/ЗР (Huang et al., 2015). 

Гальмування ростових процесів на початковому етапі формування відповіді 

на холодовий стрес тісно пов'язане з пригніченням біосинтезу гіберелінів, 

ауксинів і цитокінінів, котрі стимулюють клітинну проліферацію та ріст клітин 
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розтягненням. У свою чергу сповільнення біосинтезу та сигналінгу цих 

фітогормонів спричиняє тимчасове уповільнення вегетативного росту та 

розвитку репродуктивних структур, дозволяючи злакам ефективно 

перерозподіляти енергетичні та пластичні ресурси, необхідні для синтезу 

протекторних молекул, активації антиоксидантних систем і перебудови 

мембранних структур (Rahman, 2013; Vanková et al., 2014). Потенційний зв’язок 

між ІОК й АБК досліджували у лініях рису з надлишковою експресією OsGH3-2 

гену, що кодує фермент, відповідальний за кон’югацію IОК з амінокислотами. 

Зниження вмісту вільної ІОК викликало супутнє підвищення рівнів АБК і 

стійкість до холоду (Du et al., 2012). Градієнт ауксинів, що формується внаслідок 

їхнього внутрішньоклітинного транспорту, є важливим механізмом регуляції 

гормональних взаємодій, що впливають на ріст, розвиток і врожайність рослин 

за зміни температур (Rahman, 2013). Під час холодового стресу спостерігалось 

зменшення вмісту ІОК у листках і коренях ярої та озимої пшениці Triticum 

monococcum, тоді як у фазу адаптації (21 доба) зафіксовано накопичення 

ендогенних ауксинів та підвищення рівня фенольних сполук, які беруть участь у 

стабілізації рівня гормону (Vanková et al., 2014). Про зменшення вмісту ауксинів 

у першу добу дії низької температури (+4 °С) у листках озимої та ярої пшениць 

повідомлялось у роботі (Kosová et al., 2012). Garbero et al. (2012) було показано, 

що короткотривалий холодовий стрес (+5 °C) викликав гальмування росту та 

зниження вмісту ІОК у чутливого сорту Digitaria eriantha (родини Poaceaea) у 

період відновлення, тоді як стійкий сорт, навпаки, характеризувався підвищеним 

рівнем гормону. 

Цитокініни задіяні у контролі багатьох фізіологічних і метаболічних 

процесів та причетні до формування адаптивних реакцій на дію абіотичних 

стресорів (Веденичова, Косаківська, 2020; Cortleven et al., 2019). Проте роль 

цитокінінів у формуванні реакції рослин на дію низької температури до кінця не 

з’ясована. За низької температури вміст цитокінінів, як правило, зменшується і 

пригнічується цитокініновийсигналінг (Maruyama et al., 2014), що відповідає 

гальмуванню ростових процесів. Встановлено, що у формуванні реакції на холод 

задіяний сигнальний шлях цитокінінів та пов’язані з цитокінінами фактори 

транскрипції. Функція самого гормону на сьогодні однозначно не встановлена. 

Гени цитокінінів (за виключенням CRF2іCRF3, які експресуються холодом і 

сприяють ініціації та формуванню бічних коренівтаCRF4, що є позитивним 

регулятором стійкості до замерзання) в цілому не дуже сприйнятливі до низьких 

температур (Ramireddyetal., 2014).Після короткотривалого холодового стресу 

(+2 °С, 2 год.) сумарний вміст цитокінінів у коренях і надземній частині 14-
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добових рослин озимої пшениці морозостійкого сорту Володарка зменшувався. 

Сайт накопичення гормону знаходився у надземній частині, т-ЗР домінував у 

коренях, а т-З у надземній частині (Kosakivska et al., 2016). Також було 

встановлено, що після холодового стресу вміст цитокінінів зеатинового ряду 

суттєво зменшувався у коренях жаростійкого сорту озимої пшениці Ятрань 60, 

натомість у надземній частині відбулось зростання рівнів цих форм гормону 

(Косаківська та ін., 2015).  

В роботах інших дослідників повідомлялось, що за холодового стресу в 

рослинах пшениці однозернянки Triticum monococcum вміст цитокінінів 

зменшувався, натомість у фазу адаптації (через 21 добу) рівень активних форм 

гормону зростав і сягав максимальних значень (Vanková et al., 2014). У відповідь 

на холодовий стрес (+4 °C) у рослинах озимої та ярої пшениці зменшувався вміст 

біоактивних цитокінінів. Після 3–7 діб дії низької температури рівень ендогенних 

цитокінінів зростав, а на 21 добу знижувався. Ці реакції виявилися більш 

швидкими і виразнішими в рослинах озимої пшениці (Kosová et al., 2012). 

Дослідження змін у вмісті цитокінінів за коротко- і довготривалої холодової 

обробки виявили суттєві відмінності між чутливими та холодостійкими 

генотипами пшениці. Зменшення вмісту активних форм цитокінінів у відповідь 

на холодовий стрес відбувалося в холодостійких генотипів пшениці та 

супроводжувалось активацію гену, що кодує ізопентенілтрансферазу, ключовий 

ензим біосинтезу цитокінінів (Kalapos et al., 2017). 

Ми дослідили вплив холодового стресу (+4 °С, 2 год) на ростові 

характеристики 14-добових рослин Triticum aestivum L. сорту Подолянка, 

Triticum spelta L. сорту Франкенкорн і Secale cerealе L. сорту Богуславка та 21-

добових рослин після відновлення. Короткотривала дія низької позитивної 

температури не вплинула на лінійні показники надземної частини і коренів 14-

добових рослин досліджуваних видів. Певні зміни відбулись у накопиченні 

біомаси та сухої маси органами злаків. Так, біомаса та суха маса надземної 

частини пшениці Подолянка зросла на 5,6% і 6,1% відповідно. Біомаса коренів 

зменшилась на 5,1%, тоді як суха маса збільшилася на 12,9%. Біомаса та суха 

маса надземної частини спельти Франкенкорн підвищилася на 6,1% та 13,3% 

відповідно, тоді як біомаса коренів зменшилась на 10,5%. Біомаса надземної 

частини рослин жита Богуславка збільшилася на 5,9% (табл. 3.4). 

У період відновлення висота надземної частини 21-добових рослин пшениці 

Подолянка та жита Богуславка не досягла контрольних показників, тоді як у 

спельти Франкенкорн вона підвищилась на 12,4%. Довжина коренів пшениці та 

спельти відповідала контрольним показникам, у жита довжина коренів зросла на 
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7,4%. Біомаса надземної частини і коренів пшениці Подолянка була на 9,6% та 

10%, а суха маса на 5,9% та 14,4% нижче за контрольні показники (табл. 3.4). 

 

Таблиця 3.4. Морфофенологічна характеристика 14-добових рослин Triticum 

aestivum L. сорту Подолянка, Triticum spelta L. сорту Франкенкорн і Secale cerealе 

L. сорту Богуславка за дії позитивної низької температури (+4 °С, 2 год) та 21-

добових рослин після відновлення 

 

Варіант 

Надземна частина Корені 

Висота, см 
Біомаса/сухамаса, 

мг 

Довжина, 

см 

Біомаса/суха маса, 

мг 

Triticum aestivum L. сорт Подолянка 

Контроль, 

14 доба 
27,9±1,4 

124,2±6,21 

19,7±1,02 
11,6±0,6 

79,3±4,01 

7,0±0,42 

Охолодження, 

14 доба 
28,0±1,4 

131,1±6,61* 

20,9±1,52 
11,8±0,6 

75,2±3,81* 

7,9±0,42 

Контроль, 

21 доба 
38,7±1,9 

157±7,91 

28,6±1,42 
12,5±0,6 

88,2±4,41 

11,1±0,62 

Відновлення, 

21 доба 
,38,1±1,8 

142±7,11* 

26,9±1,32 
12,3±0,6 

80,0±4,01 

9,5±0,52* 

Triticum spelta L. сорт Франкенкорн 

Контроль, 

14 доба 
25,7±1,3 

148±7,41 

22,6±1,12 
12,1±0,6 

86±4,31 

10,7±0,52 

Охолодження, 

14 доба 
25,6±1,3 

157,4±7,91* 

25,4±1,32 
12,1±0,6 

77±3,91* 

11,1±0,62 

Контроль, 

21 доба 
35,5±1,8 

164,0±8,21 

27,2±1,42 
13,8±0,7 

98±4,91 

13,3±0,72 

Відновлення, 

21 доба 
39,9±2,0 

159,1±8,01* 

28,2±1,42 
13,7±0,7 

89±4,51* 

12,7±0,62* 

Secale cerealе L. сорт Богуславка 

Контроль, 

14 доба 
18,3±0,9 

119,2±6,01 

14,6±0,72 
15,0±0,6 

126,1±6,31 

15,6±0,82 

Охолодження, 

14 доба 
18,1±0,9 

126,3±6,31 

15,3±0,82 
14,9±0,6 

124,2±6,21 

15,9±0,82 

Контроль, 

21 доба 
23,7±1,2 

150,1±7,51 

21,2±1,12 
17,2±0,9 

135,0±6,81 

17,7±0,92 

Відновлення, 

21 доба 
21,2±1,1 

141,9±7,11* 

19,2±1,02* 
17,6±0,9 

139,2±7,01 

18,1±0,92 

Примітка: 1 – біомаса органу; 2 – суха маса органу, * – достовірна відмінність при P ≤ 0,05 порівняно з 

контролем. Представлені дані є середніми значеннями ± SE, n = 40. 

 

Біомаса коренів спельти Франкенкорн на 9,2% поступалась контролю, тоді 

як біомаса і суха маса надземної частини та суха маса коренів знаходились у його 
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межах. У 21-добових рослин жита Богуславка висота, біомаса та суха маса 

надземної частини були на 10,5%, 5,5% та 9,4% відповідно нижче за контроль 

(табл. 3.4). 

Отже, за показниками біомаси стійкою до холодового стресу виявилась 

надземна частина всіх 14-добових досліджуваних злаків і коренева система жита 

Богуславка. За лінійними показниками успішне відновлення відбулось у 

надземній частині спельти Франкенкорн і коренях жита Богуславка.  

У 14-добових рослин пшениці й спельти у відповідь на дію низької 

позитивної температури відбулись подібні за характером і спрямованістю зміни 

в накопиченні та розподілі ендогенних АБК, ІОК, гіберелінів і СК (Voytenko et 

al., 2024a, b) (рис. 3.6). Сумарний вміст ендогенної АБК збільшився в обох видів, 

однак у пшениці такі зміни були набагатоінтенсивнішими (на 396%), ніж у 

спельти (на 74%). Натомість зменшення сумарного вмісту ІОК і гіберелінів та 

збільшення рівня СК в обох видів було подібним. У пшениці сумарний вміст 

цитокінінів збільшився на 57,9%, тоді як у спельти зменшився на 26,2%. Після 

відновлення на 21 добу вегетації вміст ендогенної АБК у рослин пшениці 

перевищив контрольні показники на 130%, натомість у рослин спельти 

відповідав контролю. Накопичення ендогенної ІОК в обох видів не досягло 

контрольних показників. У післястресових рослин пшениці повністю 

відновились рівні гіберелінів та СК, а у рослин спельти лише гіберелінів. 

Кількість СК у рослин спельти перевищила контроль на 53,9%. Після дії низької 

температури сумарний вміст цитокінінів у рослин пшениці зменшився, але був 

вище за контроль на 21,9%, а у рослин спельти рівень цитокінінів на 65,3% був 

нижче контролю (рис. 3.6). 

У відповідь на короткотривале охолодження відбулось накопичення АБК та 

СК (особливо в органах надземної частини) жита Богуславка. Після припинення 

дії охолодження вміст АБК у досліджуваних органах вирівнявся за рахунок 

накопичення у коренях. Ендогенний вміст СК також збільшився у коренях і був 

у 2,5 раза вище, ніж у надземній частині. Сумарний вміст АБК і СК у 

відновлювальних рослинах жита після охолодження був відповідно на 35,7% 

вище та на 6,6% нижче за контроль. У коренях вміст ауксину зменшився на 17,9% 

і продовжував знижуватись після відновлення, особливо у надземній частині. 

Рівні ауксину після припинення дії позитивної низької температур були нижче 

контрольних на 51,7% у надземній частині та на 29,1% у коренях жита 

Богуславка. Спостерігалось також зменшення вмісту гіберелінів особливо у 

коренях (рис. 3.6). 

 



  

  

Рис. 3.6. Вплив короткотривалого охолодження (+4 °С, 2 год) на накопичення ендогенних фітогормонів у надземній частині та коренях 14-

добових рослин Secale cereale L. сорту Богуславка, Triticum aestivum L. сорту Подолянка та Triticum spelta L. сорту Франкенкорн та у 21-добових 

рослин після відновлення, % до контролю 

 



Охолодження індукувало комплексні зміни вмісту та розподілу цитокінінів, 

залежних від виду та органу рослини. Після охолодження загальний вміст 

цитокінінів у коренях пшениці збільшився втричі за рахунок накопичення т-ЗОГ, 

т-З, іП та іПА. Стрес не вплинув на накопичення т-ЗР у коренях, але спричинив 

збільшення його вмісту в 4 рази в надземній частині пшениці (рис. 3.7, А). 

 

 

 
Рис. 3.7. Вміст і розподіл ендогенних цитокінінів в органах 14-добових рослин Triticum 

aestivum L. Сорту Подолянка (А), Triticum spelta L. Сорту Франкенкорн (Б) і Secale сereale L. 

Сорту Богуславка (В) після охолодження (+4 °С, 2 год) та на 21-шу добу після відновлення, 

нг/г сирої речовини 
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Загальний вміст цитокінінів у коренях спельти зменшився в 1,4 рази за 

рахунок зниження вмісту т-ЗОГ і т-ЗР, а в надземній частині в 1,2 рази за 

рахунок зниження рівня т-ЗОГ та іП (рис. 3.5, Б). Загальний вміст цитокінінів у 

пагонах жита збільшився на 43,2% тут домінували зеатинові форми гормону. 

Натомість, у коренях він зменшився на 52,6%. При цьому сумарний вміст 

зеатинових форм був у 2,8 раза нижче, а ізопентенільних форм у 2,8 раза вище за 

контрольні показники. Серед зеатинових форм домінував т-ЗР (рис. 3.7, В). 

У цілому, охолодження індукувало зростання вмісту цитокінінів у пагонах 

18-добових рослин жита на 43,1%, у коренях пшениці на 146,5%, а після 

відновлення – у пагонах і коренях 21-добових рослин пшениці. 

Загалом, отримані результати продемонстрували спільні риси, а також 

органо-і видоспецифічні особливості перебудови гормонального гомеостазу 

досліджених видів злаків при формуванні швидкої адаптації до холодового 

стресу в період відновлення, що додало нові уявлення про реакцію злакових 

рослин на дію низької позитивної температури на ранніх етапах вегетації. 
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3.4. Гормональний гомеостаз злаків за помірної ґрунтової посухи 

 

Через глобальні кліматичні зміни і антропогенне навантаження на ґрунти і 

водойми одним із найбільш загрозливих абіотичних чинників стає ґрунтова 

посуха, яка гальмує та пригнічує метаболічні процеси, ріст, розвиток і 

врожайність рослин. Головним тригером сигнального каскаду при формуванні 

реакції-відповіді злаків на дію посухи визнана АБК. Рецептори та ключові 

фактори трансдукції АБК-сигналінгу ідентифіковані у таких культурних злаків, 

як пшениця, рис, кукурудза та ячмінь (Daszkowska-Golec, Szarejko, 2013). 

З’ясувалось, що активація біосинтезу АБК (Estrada-Melo et al., 2015) та 

гіперекспресія компонентів її сигнального шляху (Мао et al., 2010) підвищували 

посухостійкість. У першому випадку зменшувалась апертура продихів і 

відбувались стрес-індуковані зміни транскриптому, тоді як у другому були 

ідентифіковані лише зміни в транскриптомі. Накопичення ендогенної АБК за 

умов посухи відіграє важливу роль для підтримки росту коренів (Giuliani et al., 

2005), формування та подовження кореневих волосків (Chenetal., 2006; Xu et al., 

2013). Зростання вмісту ендогенної АБК в коренях томату індукувало збільшення 

об’єму ризосфери, завдяки чому покращувалось надходження води та поживних 

речовин в умовах посухи (Karanja et al., 2021). 

Зниження показників урожайності, вмісту білка і вуглеводів у зерні пшениці 

було пов'язано зі зменшенням рівнів ендогенних IОК, зеатинрибозиду, та ГК1+3 і 

підвищенням вмісту АБК (Xie et al., 2003). В умовах посухи накопичені у 

кореневій системі пшениці ауксини регулювали використання води у денний та 

нічний час, моделювали гідравлічні властивості, підтримували водо-

забезпечення, підвищували врожайність (Sadok, Schoppach, 2019). Адаптація 

рослин пшениці до ґрунтової посухи забезпечувалась завдяки підтримці водного 

балансу, затримці росту надземної часини та посиленню росту кореневої системи 

(Косаківська та ін., 2018). Стійкість до посухи корелювала з ауксин-залежним 

зменшенням вмісту активних форм кисню (Shi et al., 2014). Показано, що за 

умови посухи експресія гену флавінмонооксигенази YUCCA7, задіяного у 

триптофан-залежному шляху біосинтезу ауксину, відбувається переважно в 

коренях із підвищеним рівнем ІОК, які відзначаються покращеним ростом і 

будовою кореневої системи (Lee et al., 2012). 

У низці публікацій повідомлялось, що за дії стресорів відбуваються зміни у 

вмісті ендогенних гіберелінів, які впливають на ростові процеси і сприяють 

адаптації. Так, мутантні лінії зі зниженим вмістом гіберелінів проявляли соле- і 

посухостійкість завдяки зменшенню біосинтезу або посиленню деградації 
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гормону (Llanes et al., 2016). Карликові сорти рису та ячменя з низьким рівнем 

гіберелінів демонстрували стійкість до різних стресорів, у тому числі до посухи 

(Vettakkorumakankav et al., 1999). У листках кукурудзи, пагонах квасолі й люпину 

під час посухи значно зменшувався вміст ГК3 (Abass, Mohamed, 2011; Abdalla, 

2011; Llanes et al., 2016). Повідомлялось також про зниження рівня ендогенних 

гіберелінів на ранніх етапах наливу зернівок рису за дії посухи (Yang et al., 2001). 

У коренях емеру Triticum turgidum ssp. dicoccoides за дії посухи збільшувався 

вміст гіберелінів, посилювався ріст коренів і гальмувався ріст пагонів (Krugman 

et al., 2011). За використання інгібіторів гіберелінового синтезу було показано, 

що стійкість до посухи досягалась одночасно зі збільшенням біомаси та 

врожайності злакових рослин (Plaza-Wüthrich et al., 2016). З’ясувалось, що 

експресія генів, які кодують задіяні в синтезі гіберелінів ензими, регулюється 

зовнішніми сигналами. Так, за дії негативних чинників синтез гіберелінів 

пригнічується завдяки експресії генів GA2ox, які кодують GA2-інактивуючі 

ензими, а також гена DELLA RGL3, який кодує супресор росту (Colebrook et al., 

2014; Minguet et al., 2014). Повідомлялося, що задіяні у синтезі та сигналінгу ГБ 

гени SD1, GDD1, SLR1, EUI, GID1, SD1 та D1 регулюють ріст і розвиток органів 

рослин рису та їхню архітектуру, врожайність і формування реакції на стрес 

(Colebrook et al., 2014; Liu et al., 2018). Маніпулювання рівнем гіберелінів у 

карликових сортів рису призвело до збільшення врожаю зерна, розгалуженню 

кореневої системи та підвищенню посухостійкості й стійкості до негативних 

біотичних чинників (Lo et al., 2017). 

Ендогенна та екзогенна СК посилювали первинні реакції рослин на дію 

абіотичних стресорів, а в трансдукції саліцилового сигналінгу були задіяні іони 

кальцію та активні форми кисню і азоту (Kolupaev et al., 2015). На рослинах 

арабідопсису показано, що абіотичні стреси посилюють накопичення 

ендогенної СК, яка бере участь у трансдукції сигналів при формуванні реакцій 

на посуху (He et al., 2014). СК індукувала зростання вмісту перекису водню, який 

стимулював синтез захисних антиоксидантних сполук, що посилювало 

стресостійкість (Наra et al., 2012). Відзначалось, що зміни у вмісті ендогенних 

СК та АБК в рослинах Brassica napus L. залежали від інтенсивності та тривалості 

дії посухи. На початковому етапі дії стресору відбувалось швидке зниження 

інтенсивності фотосинтезу, накопичення Н2О2 та Са2+ і зростання рівнів СК та 

АБК. Пізня фаза характеризувалася симптоматичними стресовими реакціями, 

опосередкованими АБК зі значним підвищенням експресії генів, пов'язаних з 

АБК (NCED3 і MYC2), та супутнім пригніченням генів, пов'язаних з СК (ICS1 та 

NPR1) (Park et al., 2021). На прикладі двох генотипів ячменю – сучасного сорту 
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Maresi та дикого виду Hordeum spontaneum було досліджено вплив помірного 

(ПЕГ -0,75 МПа) та сильного (ПЕГ -1,5 МПа) водного дефіциту на вміст СК у 

листках і коренях. Показано, що за дефіциту води вміст СК зростав у коренях і 

не змінювався у надземній частині рослин. Рівень СК в коренях контрольних 

рослин Maresi був вдвічі вищий, ніж у H. spontaneum. Після 6 год помірного 

стресу рівень СК у дикого виду і нового генотипу зріс у 2,0 і 2,5 раза відповідно. 

В умовах сильного стресу рівень СК збільшився вдвічі в обох генотипах через 24 

год після стресу. Обробка рослин СК пом’якшувала дію дефіциту води на 

мембрану клітин листків. Захисний ефект був більш виразним у H. spontaneum. 

Обробка СК підвищувала вміст АБК у листках обох генотипів, тоді як 

накопичення проліну спостерігалося лише у H. spontaneum. Отримані результати 

засвідчили, що АБК і пролін можуть сприяти розвитку антистресових реакцій, 

індукованих СК (Bandurska, Stroiński, 2005). 

Цитокініни регулюють ріст рослин та підтримують стабільне 

функціонування фотосинтетичного апарату за умов посухи (Rivero et al., 2009; 

Prerostova et al., 2018). Повідомлялось, що екзогенна обробка та моделювання 

вмісту ендогенних цитокінінів позитивно впливали на посухостійкість (Rulcova, 

Pospišilova, 2001). Цікаво, що надбання посухостійкості спостерігалось як за 

зменшення, так і зростання вмісту ендогенних цитокінінів (Rivero et al., 2007; 

Werner et al., 2010; Nishiyama et al., 2011). Зниження вмісту цитокінінів переважно 

відбувається за гіперекспресії цитокініноксидази/дегідрогенази (CKX) (Werner et 

al., 2010). Експресія гену CKX, що кодує фермент деградації цитокінінів, 

призводила до уповільнення темпів росту та збільшення вмісту захисних сполук, 

що сприяло підвищенню посухостійкості арабідопсису (Nishiyama et al., 2011; 

Werner et al., 2001), тютюну (Macková et al., 2013) та ячменю (Pospíšilová et al., 

2016), що проявлялось зокрема у зростанні коефіцієнта виживаності. 

Підвищений вміст цитокінінів у SAG12:ipt мутантах мітлиці повзучої Agrostis 

stolonifera L. (Merewitz et al., 2012; Xu et al., 2016) значно посилював стійкість до 

посухи, стимулюючи активність антиоксидантної системи. Оцінюючи вплив 

цитокінінів на посухостійкість, слід враховувати фенотипові ознаки рослин, які 

можуть мати надмірно розвинену кореневу систему, карликові пагони, змінену 

морфологію листка та уповільнений ріст (Werner et al., 2010). Через зменшення 

розмірів поверхні листка та низьку провідність продихів уповільнюється 

транспірація, завдяки чому за умов посухи підтримується високий вміст води 

(Lubovská et al., 2014). 

Prerostova зі співавторами (2018) повідомляють, що зниження вмісту 

ендогенних цитокінінів під час посухи супроводжувалось меншими втратами 
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вологи листками трансгенних рослин арабідопсису та зростанням 

посухостійкості. Проте, ці рослини повільніше відновлювались після поливу. 

Зростання ж вмісту цитокінінів за посухи в інших мутантів арабідопсису 

призводило до значної втрати рослинами вологи. Однак ці рослини швидше й 

енергійніше відновлювались. У всіх досліджених рослин за посухи 

пригнічувався ріст, зростав вміст ендогенної АБК та зменшувався ІОК. 

Ми дослідили вплив помірної ґрунтової посухи (4 доби без поливу) на 

ростові характеристики 18-добових рослин Triticum aestivum L. сорту Подолянка, 

Triticum spelta L. сорту Франкенкорн і Secale cerealеL. сорту Богуславка та 21-

добових рослин після відновлення (табл. 3.5). 

За ґрунтової посухи висота та біомаса надземної частини 18-добових 

рослин пшениці Подолянка зменшилась відповідно на 6,5% і 25,9%, відбулось 

також незначне зменшення довжини та біомаси коренів. Суха маса органів 

пшениці залишалась в межах контролю. Висота та біомаса надземної частини 

спельти Франкенкорн зменшились відповідно на 12% і 26%. Зафіксовано також 

зменшення довжини та біомаси коренів відповідно в 1,1 та 1,3 раза та показників 

сухої маси надземної частини і коренів відповідно на 10% і 25%.Висота 

надземної частини 18-добових рослин жита Богуславка зменшилась на 14,3%, а 

довжина коренів на 3,8%. Відмічено зменшення біомаси надземної частини на 

24,6% і коренів на 22,5%, а також показників сухої маси органів, яке відбулось у 

межах похибки(табл. 3.5). 

У період відновлення на 21-шу добу висота та біомаса надземної частини 

рослин пшениці Подолянка були відповідно в 1,4 та 1,5 раза менші за контроль. 

Довжина та біомаса коренів поступалися контрольним відповідно на 27% і 8,6%. 

Суха маса надземної частини зменшилась на 15%. Висота та біомаса надземної 

частини 21-добових рослин спельти Франкенкорн після відновлення були 

відповідно в 1,4 та 1,3 раза менші за контроль. Поступалися контрольним також 

показники довжини та біомаси коренів стресованих рослин (на 16% і 15% 

відповідно). Суха маса коренів зменшилась на 13%. Після відновлення поливу 

ростові показники рослин жита Богуславка не досягали контролю. Лінійні 

показники надземної частини та коренів поступались контрольним відповідно на 

8% і 5%, біомаса на 7% і 6%, а суха маса надземної частини на 10% (табл. 3.5). 

 

 

 



64 

 

Таблиця 3.5. Морфофенологічна характеристика 18-добових злакових рослин за 

дії помірної ґрунтової посухи (4 доби без поливу) та 21-добових рослин після 

відновлення 

 

 

Варіант 

Надземна частина Корені 

Висота, см 
Біомаса/суха 

маса, мг 
Довжина, см 

Біомаса/суха 

маса, мг 

Triticum aestivum L. сорт Подолянка 

Контроль, 

18 доба 
33,6±7 

223,7±11,21 

35,8±1,82 
12,2±0,6 

51,5±2,61 

10,0±0,52 

Ґрунтова посуха, 

18 доба 
31,4±1,6 

166,0±8,31* 

35,9±1,82* 
11,4±0,6 

48,6±2,41* 

10,8±0,52 

Контроль, 

21 доба 
44,0±2,2 

323,5±16,21 

50,8±2,52 16,6±0,8 
88,7±4,91 

14,7±0,72 

Відновлення, 

21 доба 
31,5±1,6 

210,3±2,51* 

43,1±1,72* 12,1±0,6 
81,0±4,31 

13,1±0,72 

Triticum spelta L. сорт Франкенкорн 

Контроль, 

18 доба 
34,5±1,7 

204,7±10,21 

28,2 ±1,42 14,2±0,7 
139,9±7,01 

22,9±1,12 

Ґрунтова посуха, 

18 доба 
30,3±1,5 

150,9±7,51* 

25,4±1,32* 
12,5±0,6 

109,5±5,51* 

17,7±0,92* 

Контроль, 

21 доба 
44,0±2,2 

231,7±11,61 

30,6±1,5 15,4±0,8 
146,4±7,31 

22,3±1,1 

Відновлення, 

21 доба 
31,6±1,5 

184,8±9,21* 

29,8±1,5 
12,9±0,6 

124,3±6,21* 

19,4±1,02* 

Secale cerealе L. сорт Богуславка 

Контроль, 

18 доба 
21,0±1,0 

126,3±6,41 

15,4±0,82 
15,6±0,8 

120±5,91 

14,8±0,72 

Ґрунтова посуха, 

18 доба 
18,1±0,9 

95,1±4,71* 

14,7±0,62 
15,0±08 

93,3±4,71* 

13,8±0,72 

Контроль, 

21 доба 
23,9±1,2 

149,1±7,51 

19,1±0,92 
17,3±0,9 

134,1±6,01 

16,7±0,82 

Відновлення, 

21 доба 

22,1±1,1 

 

138,4±6,91* 

17,2±0,62* 
16,4±0,8 

126,2±5,01* 

16,0±0,82 

Примітка: 1 – сира маса органу; 2 – суха маса органу. * – Достовірна відмінність при P ≤ 0,05 порівняно 

з контролем. Представлені дані є середніми значеннями ± SE, n = 40. 

 

Отже, досліджені злакові рослини виявилась достатньо чутливими до 

посухи, що проявилось у пригніченні і подальшому гальмуванні ростових 

процесів. У 18-добових рослин спельти Франкенкорн вразливішими виявились 

корені, тоді як у пшениці Подолянка – надземна частина. Посуха мала 

пролонговану дію на ріст рослин. На 21-шу добу після відновлення поливу повної 
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реабілітації стресованих рослин не відбулось. Чутливі втрати були зафіксовані 

для показників біомаси надземної частини всіх досліджених видів. За 

показниками сухої маси краще відновлювались рослини жита Богуславка. 

Загалом, за морфометричними показниками, молоді рослини жита Богуславка 

найкраще переносили помірну ґрунтову посуху та краще відновлювались. На 21-

шу добу після відновлення більш потужна коренева система спельти виявилась 

стійкішою до зневоднення, тоді як корені пшениці Подолянка, котрі за біомасою 

значно поступались кореням спельти, суттєво потерпали від зневоднення. 

Відмінності в реакції пшениці та спельти на вплив помірної ґрунтової посухи, на 

нашу думку, зумовлені більшою стійкістю спельти, яку вважають вірогідним 

диким попередником пшениць (рис. 3.8). 

 

 
Рис. 3.8. Рослини Triticum spelta L. сорту Франкенкорн після помірної ґрунтової посухи. А: 

зовнішній вигляд 18-добових рослин (ліворуч – стресовані, праворуч – контроль); Б: контроль, 

18-добові рослини; В: 18-добові рослини після припинення поливу на 14 добу; Г: зовнішній 

вигляд 21-добових рослин; Д: контроль, 21-добові рослини; Ж: 21-добові рослини, що зазнали 

впливу ґрунтової посухи 

 

Ми дослідили вплив помірної ґрунтової посухи на вміст і розподіл 

фітогормонів у надземній частині та коренях пшениці Подолянка, спельти 

Франкенкорн (Kosakivska et al., 2022a) та озимого жита Богуславка. За помірної 

ґрунтової посухи вміст ендогенної АБК помітно зріс в органах 18-добових 

рослин пшениці з домінуванням у коренях. Натомість у спельти гормон 



66 

 

накопичувався у надземній частині. ІОК домінувала у надземній частині пшениці 

та спельти, а вміст гормону зменшився в органах обох досліджуваних видів. У 

період відновлення на 21-шу добу АБК накопичувалася в коренях і надземній 

частині пшениці та в надземній частині спельти. Вміст ІОК зріс у надземній 

частині й коренях спельти та в коренях пшениці, проте не досяг показників 

контролю. Сайт накопичення ІОК у пшениці змістився до кореневої системи, тоді 

як у спельти залишився в надземній частині. Вміст АБК та ІОК у стресованих 

рослин і в період відновлення був на порядок вище у пшениці, ніж у спельти. 

Зменшення вмісту ГК3 за помірної ґрунтової посухи відбулося в обох видах. У 

пшениці гормон домінував у коренях, тоді як у спельти – у надземній частині. На 

21-шу добу після відновлення сайт акумуляції гібереліну знаходився в коренях 

рослин пшениці та спельти. За кількісним вмістом ГК3 переважали корені 

пшениці. Рівень СК в органах 18-добових рослин пшениці та спельти зростав у 

надземній частині більше, ніж у коренях. Вміст СК на 21-шу добу після 

відновлення у стресованих рослин пшениці фактично відповідав контролю, тоді 

як у спельти значно перевищував контрольні показники. Посуха індукувала 

неспецифічні і специфічні зміни у накопиченні і розподілі ендогенних 

фітогормонів у рослинах жита Богуславка. Неспецифічною реакцією на посуху 

виявилось накопичення стресових гормонів АБК і СК та пригнічення в 

акумуляції гормонів росту ІОК і гіберелінів. Проте зміни в динаміці та локалізації 

гормонів мали органоспецифічний характер. Значне зростання вмісту АБК і СК 

спостерігалось у пагонах стресованих і відновлених рослин, що відповідало 

гальмуванню ростових процесів. Пролонгована дія посухи відображалась у 

посиленій акумуляції АБК у пагонах і коренях відновлених рослин. Натомість 

рівень СК у коренях зменшився, тоді як пагони продовжували акумулювати 

гормон. Посуха індукувала суттєве зменшення вмісту ІОК особливо у пагонах 

жита, водночас у коренях значно зменшився вміст гіберелінів. Після відновлення 

рівень ІОК зріс, проте не досяг показників контролю. Рівень гіберелінів в коренях 

збільшився, натомість у надземній частині зменшився (рис. 3.9). 

 



  

  

Рис. 3.9. Вплив помірної ґрунтової посухи (4 доби без поливу) на накопичення ендогенних фітогормонів у надземній частині та коренях 18-

добових рослин Secale cereale L. сорту Богуславка, Triticum aestivum L. сорту Подолянка та Triticum spelta L. сорту Франкенкорн та у 21-добових 

рослин після відновлення, % до контролю 

 



Посуха викликала складні перебудови у вмісті та розподілі цитокінінів. У 

коренях і пагонах 18-добових рослин пшениці Подолянка вміст т-З збільшився, 

натомість значно зменшилась кількість т-ЗОГ та іП. Після відновлення вміст 

активних форм т-З та іП у пагонах і т-З у коренях перевищував такий у 

контрольних 21-добових рослинах. Водночас рівні т-ЗОГ у пагонах і коренях та 

іП у коренях залишалися нижчими за контроль (рис. 3.10, А). 

 

 

 

 
Рис. 3.10. Вміст і розподіл ендогенних цитокінінів в органах 18-добових рослин Triticum 

aestivum L. сорту Подолянка (А), Triticum spelta L. сорту Франкенкорн (Б) та Secale сereale L. 

сорту Богуславка (В) після помірної ґрунтової посухи (4 доби без поливу) та на 21-шу добу 

після відновлення, нг/г сирої речовини 
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У пагонах спельти Франкенкорн після помірної ґрунтової посухи 

зменшився вміст т-З, т-ЗР, т-ЗОГ та іПА. Натомість вміст усіх форм цитокінінів, 

крім т-З, у коренях зріс. Після відновлення у 21-добових рослин зріс вміст т-З, 

т-ЗР, т-ЗОГ та іП, однак не досяг контрольних показників (рис. 3.10, Б). 

В цілому, за дії посухи сумарний вміст цитокінінів у надземній частині18-

добових рослин пшениці та спельти зменшився, тоді як у коренях зріс. 

Накопичення цитокінінів активніше відбувалось у коренях стресованих рослин 

пшениці. На 21-шу добу після відновлення сумарний вміст цитокінінів у пшениці 

зменшився, проте перевищив контрольні показники, натомість у спельти – зріс, 

але не досяг контролю. Після посухи сумарний вміст цитокінінів підвищився у 

пагонах 18-добових рослин жита Богуславка на 47,2%, натомість у коренях 

зменшився на 52,4%, Домінували зеатинові форми, вміст яких у пагонах майже 

вдвічі перевищував такий у коренях. Рівень ізопентенільних форм у пагонах 

збільшився в 1,6 раза і зменшився в коренях у 1,9 раза.  

Найбільші зміни спостерігались у накопиченні т-ЗР за всіх досліджених 

стресів, що може свідчити про залучення цього цитокініну до регуляції 

стресостійкості жита. За вмістом цитокінінів післястресові рослини поступались 

контрольним (рис. 3. 10, В). 

У цілому зміни в характері акумуляції, локалізації та співвідношенні між 

фітогормонами окремих класів в органах рослин пшениці, спельти та жита за дії 

модельованої помірної ґрунтової посухи розглядаються нами як один із головних 

чинників, який активує стрес-протекторну систему, формуючи стратегію 

адаптації. Отримані результати є підґрунтям для подальшого вивчення 

механізмів стійкості злакових культур і розробки стратегії підвищення їхнього 

адаптаційного потенціалу. 
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РОЗДІЛ 4. ЕФЕКТИ ПЕРЕДПОСІВНОГО ПРАЙМУВАННЯ 

ЕКЗОГЕННИМИ ФІТОГОРМОНАМИ НА РІСТ І ГОРМОНАЛЬНИЙ 

ГОМЕОСТАЗ ЗЛАКІВ ЗА ДІЇ НЕГАТИВНИХ КЛІМАТИЧНИХ ФАКТОРІВ 

 

 

4.1. Екзогенні фітогормони в регуляції росту та розвитку злаків  

за стресових умов 

 

Перспективним підходом підвищення стійкості та врожайності злаків є 

екзогенна обробка рослин фітогормональними препаратами, яка успішно 

використовується для пом’якшення негативних впливів (рис. 4.1) (Kosakivska et 

al., 2022b). Передпосівне праймування забезпечує оптимальні умови для запуску 

метаболічних процесів проростання, допомагає мінімізувати виникнення 

проблем, пов’язаних із якістю та структурою насіння, забезпечує рівномірні 

міцні сходи (Muhie, 2018). Механізми, завдяки яким праймування екзогенними 

фітогормонами покращує проростання насіння, наступний ріст і розвиток 

рослин, малодосліджені та до кінця незрозумілі. Припускають, що праймування 

активує метаболічні процеси, завдяки чому покращується ріст рослин (Varier et 

al., 2010). Обробка насіння та дорослих рослин екзогенними фітогормонами 

впливає на баланс і розподіл ендогенних гормонів в органах рослин (Cai et al., 

2018). 

Ауксини. Після фоліарної обробки рослин пшениці ауксинами 

прискорювався ріст, збільшувалась площа прапорцевого листка, вміст 

хлорофілу, довжина колоса та кількість і маса зерен, підвищувалась врожайність 

(Hanaa, Safaa, 2019). Ефекти фоліарної обробки розчином індоліл-3-оцтової 

кислоти (ІОК) на інтенсивність росту та розвитку цілої рослини та окремих 

органів, формування зернівок, його маси і врожайності у рослин Triticum 

turgidum залежали від термінів нанесення препарату та органу, який піддавали 

обробці (Darussalam, Patrick, 1998). Використання екзогенної ІОК знімало 

негативний ефект високої температури, за якої пригнічувалась активність 

YUCCA генів та біосинтез ендогенного ауксину в пиляках ячменю з утворенням 

стерильного пилку (Sakata et al., 2010). Екзогенна ІОК підвищувала 

посухостійкість озимої пшениці, позитивно впливала на накопичення біомаси, 

збереження водного потенціалу та біосинтез білків (Muhammad et al., 2016). 
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Рис. 4.1. Вплив абіотичних стресів та екзогенних фітогормонів на зернові культури 

 

Фоліарна обробка листків розчином ІОК разом із внесенням у ґрунт 

фосфату калію пом’якшувала негативну дію сольового стресу на рослини 

кукурудзи. У листках знижувався вміст іонів натрію і збільшувався калію, 

кальцію та фосфору, зростала біомаса пагонів, маса зерен та врожайність, 

збільшувався вміст фотосинтетичних пігментів, зменшувалась проникність 

клітинних мембран (Kaya et al., 2013). Праймування розчинами ІОК 

покращувало проростання зернівок озимої пшениці за умов засолення, 

зменшувало надходження іонів натрію в корені та подальше переміщення їх до 

пагонів, стимулювало накопичення ендогенної саліцилової кислоти (Iqbal, 

Ashraf, 2007), а уповільнення проростання зернівок пшениці було знято завдяки 

праймування розчинами гіберелової кислоти (ГК3) та ІОК (Gulnaz et al., 1999). 

Обробка зернівок пшениці розчином ІОК індукувала збільшення довжини 
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гіпокотиля, біомаси та сухої маси проростків за сольового стресу (Akbari et al., 

2007). Екзогенна ІОК зменшувала накопичення алюмінію у верхівці кореня 

пшениці та підвищувала кислотність ризосфери (Wang et al., 2013). 

Гібереліни.Фоліарна обробка рослин кукурудзи розчином ГК3 

покращувала морфофізіологічні показники в умовах посухи. Зафіксовані 

збільшення індексу листової поверхні, швидкості приросту сухої речовини, 

довжини та діаметра качана, кількості та маси зерен, покращання стійкості та 

врожайності (Sarwar et al., 2018). Праймування розчинами гіберелової та 

саліцилової кислот індукувало проростання зернівок жита Secale montanum, 

підвищувало індекс схожості, коефіцієнт швидкості проростання за умов посухи. 

Після обробки збільшувався вміст антиоксидантних ферментів каталази та 

аскорбатпероксидази (Ansari et al., 2013). Позакореневе внесення ГК3 

покращувало врожайність пшениці в умовах водного дефіциту (Haque et al., 

2022). За ґрунтової посухи екзогенний гормон сприяв стабілізації клітинних 

мембран, зростанню сухої біомаси, вмісту поживних речовин і хлорофілу, 

збереженню відносної вологості в листках кукурудзи (Kaya et al., 2006). У 

пшениці за умов сольового стресу після праймування ГК3 у пагонах і коренях 

стабілізувався іонний гомеостаз, зменшилась концентрація поліамінів та АБК, 

зріс вміст ендогенної саліцилової кислоти. Підвищення врожайності відбулося 

за рахунок збільшення кількості продуктивних стебел і маси зерна в колосі (Iqbal, 

Ashraf, 2013). Фоліарна обробка ГК3 рослин кукурудзи за умов засолення 

сприяла кращому засвоєнню кальцію, збільшенню рівня хлорофілу, проте 

зменшувала активність антиоксидантних ферментів супероксиддисмутази, 

пероксидази і поліфенолоксидази та вміст проліну, хоча ці показники 

перевищували відповідні контрольні (Tuna et al., 2008). Праймування зернівок 

ячменю розчином ГК3 полегшувало вихід рослин із сольового стресу, позитивно 

впливало на проростання і подальший ріст, індукувало синтез білків, серед яких 

74,41 кДа – гібереліновий рецептор (Abdel-Hamidm, Mohamed, 2014). Обробка 

ГК3 відновлювала нормальний розвиток пилкових зерен рису, який відбувався 

через порушення мікроспорогенезу за дії помірних низьких температур, що 

сприяло значному підвищенню врожайності (Sakata et al., 2014). За 

короткотривалої гіпертермії (+50 0С) після обробки ГК3 карликових рослин 

Hordeum vulgare відновлювався нормальний ріст, проте зменшувався вміст 

фотосинтетичних пігментів (Vettakkorumakankav et al., 1999). Праймування 

зернівок Triticum aestivum ГК3 у поєднанні з Ca2+ за умов забруднення нікелем 

сприяло відновленню ростових характеристик (висота рослини, довжина кореня, 

сира та суха біомаса), а також збільшенню вмісту хлорофілу й проліну та 

https://www.researchgate.net/profile/Heba-Mohamed-18?_sg%5B0%5D=ckEV3yzazQZC50epCN3hka6Vn4IDvkLepqvvwfohYylaH_WYiCe45ipcW1Sl2X_pi3564o8.ixr_HDQpWtOJortKl91Pz3KpAtdDtDldjGOc1S_fx0KBXGWfO9faHiRzRtPlzxYifjikfMweqjYhZMZcVCNrsw&_sg%5B1%5D=gmum9IkJNNT9D6oPviINIMa9aRy-pGjK6TVfY8CaPjE_1b0na6VHxehOJL4iS6ZTCiGjyq8.F5YK9XGSOcChXlTaO7CKLp-0XidGdQLxU1fcIStZUyzRFh4y9CP92Yy3bwdT2t7Bl2alniKJOjDX85EyyXX5Ag
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зростанню активності ангідрази, пероксидази, каталази, супероксиддисмутази, 

аскорбатпероксидази, глутатіонредуктази (Siddiqui et al., 2011). Ефекти 

праймування гіберелінами залежали від концентрації гормону, виду рослин та 

умов їхнього вирощування. Так, урожайність T. aestivum суттєво зростала після 

обробки зернівок 10–100 мкМ ГК3 (Ulfat et al., 2017). Після праймування зернівок 

колосняку китайського (Leymus chinensis) 50 мкМ ГК3 проростання 

прискорилося на 14–27%, спостерігалося активне накопичення біомаси, 

збільшення висоти й кущистості рослин. Стимулюючий ефект зберігався на 

другий рік вегетації (Ma et al., 2018). 

Цитокініни. Застосування екзогенних цитокінінів та їхніх аналогів 

покращувало врожайність пшениці (Gupta et al., 2003), кукурудзи (Dietrich et al., 

1995), рису (Ray, Chaudhary, 1981), ячменю (Hosseini et al., 2008). Обприскування 

розчином бензиламінопурину (БАП) прискорювало швидкість наповнення 

зернівок, стимулювало поділ клітин ендосперму та підвищувало вагу зерна 

пшениці за умов гіпертермії. При цьому рівень зеатинрибозиду та ІОК зростав, а 

ГК3 й АБК знижувався (Yang et al., 2016a). Негативні наслідки теплового стресу 

були усунуті після нанесення розчину БАП на стебла рису (Wu et al., 2016). У 

мітлиці повзучої (Agrostis stolonifera) обробка БАП кореневої зони підвищувала 

рівень цитокінінів у пагоні й пом’якшувала ушкодження внаслідок дії високих 

температур у ґрунті та повітрі (Liu et al., 2012), а фоліарна обробка розчином 

зеатинрибозиду перешкоджала зменшенню рівня хлорофілу, ефективності 

фотосинтезу та вмісту розчинних білків (Veerasamy et al., 2007). Обприскування 

листків проростків пшениці розчином БАП значно покращувало стан рослин при 

комбінованому стресі гіпертермія/посуха, що проявлялося у підвищенні 

стабільності мембран, вмісті фотосинтетичних пігментів і поліпшенні загальних 

ростових показників (Kumari et al., 2018). Праймування зернівок та фоліарна 

обробка рослин кукурудзи кінетином за низьких температур підвищувала 

енергію проростання, індекс площі листкової поверхні, оводненність, 

ефективність фотосинтезу, вміст фенолів та урожайність (Bakhtavar et al., 2015). 

Екзогенні цитокініни сприяли подоланню негативного впливу засолення 

(Iqbal et al., 2018). Праймування зернівок солестійкого та нестійкого сортів 

пшениці в розчині кінетину прискорювало проростання нестійкого та швидкий 

ріст проростків стійкого сорту, а в польових умовах – покращувало ріст і 

врожайність обох сортів (Iqbal et al., 2006). Обробка БАП усувала спричинене 

засоленням передчасне старіння листків райграсу (Lolium perenne), позитивно 

впливала на антиоксидантні ферменти та пригнічувала накопичення іонів 

Na+(Ma et al., 2016). Обприскування листків пшениці розчином кінетину 
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підтримувало іонний гомеостаз і знижувало ступінь пошкодження мембран 

(Gadallah, 1999). Праймування зернівок пшениці розчином БАП значно 

покращувало ріст рослин за умов засолення, при цьому збільшувався вміст 

фенолів, розчинних цукрів, хлорофілу, іонів К+, активність амілази (Bajwa et al., 

2018). Фоліарне нанесення зеатину на проростки пшениці за умов азотного 

голодування суттєво підвищувало швидкість росту кущових бруньок і знімало 

інгібуючий ефект екзогенної ІОК (Cai et al., 2018). Екзогенний БАП індукував 

накопичення ендогенних цитокінінів, покращував наповнення зерен рису (Panda 

et al., 2018). 

Механізм позитивного ефекту цитокінінів на ростові показники та 

стресостійкість рослин пов’язаний зі змінами низки важливих біохімічних 

показників (вміст пігментів, фенолів, вуглеводів тощо) та впливом на 

гормональний баланс. Передпосівна обробка зернівок жита розчином зеатину 

призвела до істотних змін цитокінінового статусу надземної частини та коренів 

молодих рослин. Вплив гіпертермії на вміст цитокінінів у рослин, вирощених із 

праймованих зернівок, був менш вираженим порівняно з рослинами, 

вирощеними з необроблених зернівок (Vedenicheva et al., 2022; Vedenicheva, 

Kosakivska, 2024). Для зменшення витрат і підвищення рентабельності 

екзогенного застосування гормонів в останні роки пропонується використання 

екстрактів рослинного походження з високим вмістом цитокінінів (Bakhtavar et 

al., 2015; Bajwa et al., 2018). 

Абсцизова кислота. Екзогенна АБК успішно застосовується для 

покращання стійкості злаків. Фоліарна обробка рослин пшениці на стадії 

цвітіння значно прискорила налив зерна і накопичення крохмалю, посилила 

ремобілізацію поживних речовин, підвищила врожайність, вміст ендогенних 

зеатинрибозиду та ІОК (Yang et al., 2014). За умови забруднення кадмієм 

екзогенна АБК суттєво знизила вміст важкого металу в рослинах рису (Hsu, Kao, 

2003). Негативні ефекти цинку на проростання зернівок озимої пшениці частково 

нівелювалися при додаванні до інкубаційного середовища 10-6 М АБК, а на 7-му 

добу вегетації була зафіксована стимулююча дія гормону на ріст коренів 

(Kosakivska et al., 2019). Фоліарна обробка проростків рису розчином АБК в 

концентраціях 10 і 50 мкМ впродовж 24 год за дії модельованого лужного стресу 

значно покращила виживання рослин і збільшила накопичення біомаси, 

посилила подовження коренів, зменшила ураження клітинних мембран (Wei et 

al., 2015a). Обробка екзогенною АБК рослин рису дикого типу за теплового 

стресу підвищила вміст вуглеводів, АТФ і білків теплового шоку, посилила 

теплостійкість (Li et al., 2020). Після обробки екзогенною АБК зросла 
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солестійкість молодих рослин рису, посилився синтез стресових білків, 

активувались ферменти, задіяні в метаболічних процесах і формуванні захисних 

механізмів (Li et al., 2010). Праймування зернівок рису 10-5М розчином АБК 

впродовж 24 год з додаванням 3 мМ кремнію суттєво покращило ріст в умовах 

засолення, збільшило суху біомасу, зменшило накопичення іонів натрію в 

пагонах солечутливого генотипу (Gurmani et al., 2013). 

АБК є тригером сигнального каскаду при формуванні реакції-відповіді 

злаків на дію посухи. Рецептори та ключові фактори трансдукції гормонального 

сигналінгу ідентифіковані в рослин пшениці, рису, кукурудзи та ячменю 

(Daszkowska-Golec, Szarejko, 2013). За умов водного стресу екзогенна АБК 

індукувала ріст активності антиоксидантних ферментів у листках кукурудзи 

(Jiang, Zhang, 2002). У молодих рослин озимої пшениці, які впродовж 5 діб 

зазнавали дії посухи, екзогенна АБК (10 мкМ) стимулювала ріст пагонів, 

накопичення сухої маси пагонів і коренів, зниження вмісту пероксиду водню та 

малонового діальдегіду, підвищення рівнів глутатіону та аскорбату (Wei et al., 

2015b).  

Посилення посухостійкості за позакореневої обробки АБК спостерігалось 

у молодих рослин кукурудзи. АБК регулювала вміст води у листках, швидкість 

транспірації, вміст каталази та пероксидази, проліну, малонового діальдегіду та 

пероксиду водню (Todorov et al., 1998). У рослин кукурудзи, коренева система 

яких піддавалась посусі, екзогенна АБК стимулювала накопичення у листках 

осмопротекторагліцинбетаїну, а також підвищувала відносний вміст води та 

суху масу (Zhang et al., 2012). Праймування розчинами АБК та саліцилової 

кислоти зернівок пшениці індукувало посухостійкість (Khan et al., 2012). 

Екзогенні АБК і мелатонін посилювали холодостійкість Elymus nutans Griseb. за 

рахунок активації антиоксидантних ферментів, підвищення вмісту 

антиоксидантів і зниження рівня АФК. Індукція мелатоніном антиоксидантного 

захисту реалізувалась через AБК-залежний сигнальний шлях (Fu et al., 2017). 

Обробка листків і коренів молодих рослин озимої пшениці 10-7моль/л розчином 

АБК стимулювала холодостійкість, зростання вмісту хлорофілу, розчинних 

цукрів і білків, зменшила проникність мембран, прискорила ріст (Jing et al., 2008; 

Liu et al., 2019). В умовах осмотичного стресу екзогенна АБК стимулювала 

солестійкість, посилюючи накопичення проліну в листках ярої пшениці (Pal et 

al., 2018) та рису (Sripinyowanich et al., 2013). 

Саліцилова кислота. Стрес-протекторні ефекти СК, як і більшості інших 

фітогормонів, реалізуються за участю сигнальної мережі рослинних клітин 

(Saleem et al., 2021). Встановлено залучення активних форм оксигену (АФО) і 
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газотрансмітеранітроген оксиду (NO) у передачу сигналів СК. Зокрема, 

показано, що в реалізації протекторної дії СК на проростки пшениці за умов 

теплового стресу беруть участь АФО, що утворюються внаслідок активації 

НАДФН-оксидази і позаклітинної пероксидази (Kolupaev et al., 2011; 2012). 

Нітроген оксид, поряд з АФО, розглядається як посередник у реалізації 

фізіологічних ефектів СК. Показано підвищення кількості NO у відповідь на дію 

СК у коренях проростків пшениці (Karpets et al., 2016). У сигнальному ланцюгу, 

який активується СК, NO розташований нижче гідроген пероксиду, оскільки 

його накопичення, індуковане дією СК, усувалося в присутності скавенджера 

H2O2диметилтіосечовини (Karpets et al., 2016). Перендбачається, що АФО і NO 

залученоі в реалізацію багатьох ефектів, що зумовлюють протекторну дію СК за 

умов абіотичних стресів, зокрема, в активацію антиоксидантної системи, синтезу 

стресових білків, накопичення осмолітів, регуляцію стану продихів (Kalachova et 

al., 2013; Prodhan et al., 2018). Повідомлялось таож про залучення ще одного 

газотрансмітера – гідроген сульфіду (H2S) в трансдукцію сигналів СК, що 

зумовлюють активацію ряду адаптивних рецій рослин. Так, у роботі Li та співавт. 

(2015) показано, що індукування теплостійкості проростків кукурудзи 

екзогенною СК супроводжувалося підвищенням вмісту сірководню в пагонах. 

Виявлено також, що спричинюване підвищення антивності антиоксидантних 

ферментів в проростках пшениці відбувалося після транзиторного зростання 

вмісту в них H2S, і цей ефект усувався дією інгибиторів L-цистеїндесульфгідрази 

(основного ферменту гідроген сульфіду з L-цистеїну) (Karpets et al., 2020). 

Показано залучення гідроген сульфіду як посередника в індукування СК 

стійкості рослин до дії холодового, осмотичного стресів, а також впливу важких 

металів (Pan et al., 2020; Kaya, 2021). Таким чином, є підстави вважати, що 

гідроген сульфід є посередником в індукуванні саліциловою кислотою 

антиоксидантної системи і можливо інших захисних систем рослин за 

абіотичних стресах. Однак, залишається не вивченим зв'язок між H2S та іншими 

компонентами сигнальної мережі (АФО, NO, Ca2+) в процесі передачі сигналів 

СК (Kolupaev et al., 2024). 

Ефекти екзогенної СК залежать від виду рослин та умов їхнього 

вирощування, інтенсивності та тривалості стресового впливу, способу обробки 

(фоліарна, праймування, внесення в середовище культивування), концентрації 

гормону. Після обробки рослин кукурудзи розчином СК зросла кількість листків 

і площа їхньої поверхні, збільшились суха маса і діаметр стебел (Hussein et al., 

2007). У рослин пшениці екзогенна СК пом’якшувала негативний вплив 

теплового стресу на фотосинтетичну активність і біосинтез хлорофілу. Після 
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фоліарної обробки 0,5 мМ розчином СК зростав вміст проліну, підвищувались 

осмотичний та водний потенціали, краще засвоювався азот (Kang et al., 2014). За 

обробки СК зменшувалась інтенсивність перекисного окислення ліпідів, 

зростала вегетативна маса, підвищувалась стійкість пшениці до посухи, 

посилювався синтез 76 білків, пов’язаних зі сигналінгом, фотосинтезом, 

метаболізмом вуглеводів, білковим та енергетичним обміном (Kang et al., 2012). 

СК як ключова сигнальна сполука бере участь в активації захисних реакцій за 

умов УФ-В опромінення. Після фоліарної обробки рослин тонконога лучного 

(Poa pratensis L.) зростав вміст α-токоферолу, хлорофілу, активність СОД та 

каталази (Ervin et al., 2004). 

СК відіграє важливу роль у захисті рослин від важких металів (ВM) 

(Kosakivska, Shcherbatiuk, 2025). Гормон безпосередньо впливав на поглинання 

та накопичення кобальту проростками пшениці (Mohamed, Hassan, 2019), кадмію 

рослинами кукурудзи (Pal et al., 2002) і ячменю (Metwally et al., 2003), разом з 

оксидом азоту посилював стійкість рису до кадмію, зв’язуючи АФК та 

активуючи антиоксидантний захист (Mostofa et al., 2019). Фоліарна обробка СК 

нівелювала токсичний вплив свинцю і ртуті на рослини рису (Mishra, Choudhuri, 

1999). Після праймування насіння кукурудзи посилювалась активність 

антиоксидантних ферментів, знімалась токсична дія кадмію на Рубіско (Krantev 

et al., 2008). Екзогенна СК пом’якшувала токсичні ефекти засолення (Hamadа, 

Al-Hakimi, 2001). Праймування зернівок пшениці індукувало зростання 

осмотичного потенціалу, співвідношення іонів K+/Na+, вмісту фотосинтетичних 

пігментів за умов сольового стресу та в контролі (Kaydan et al., 2007).Фоліарна 

обробка СК за умов сольового стресу позитивно впливала на врожайність, 

підвищувала антиоксидантний захист і стабілізувала фотосинтетичну активність 

кукурудзи (Tahjib-Ul-Arif et al., 2018). У пшениці CК індукувала морозостійкість 

завдяки посиленню активності антиоксидантних ферментів, нейтралізації АФК і 

підтримці окислювально-відновного гомеостазу (Taşgín et al., 2003), 

накопиченню проліну та запобігала зниженню вмісту ІОК і цитокінінів за 

зберігання високого рівня АБК (Shakirova et al., 2007). За високої концентрації 

екзогенна СК пригнічувала ріст, активність Рубіско та інтенсивність 

фотосинтезу в рослин пшениці (Sahu et al., 2008), підсилювала процеси 

перекисного окиснення ліпідів (Chen et al., 2016), зменшувала холодостійкість 

(Taşgín et al., 2003). Екзогенне застосування СК дозволяє усунути та пом’якшити 

симптоми токсичності, спричинені стресорами у злакових рослинах. 

Жасмонова кислота (ЖК) – циклопентанонова похідна ліпоксигеназного 

(ЛОГ) шляху окиснення поліненасичених жирних кислот (ПНЖК) 
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накопичується в органах і тканинах рослин у результаті експресії жасмонат-

індукованих генів (Babenko et al., 2015, 2017). ЖК та її похідні залучені до 

регуляції розвитку генеративних органів і зародку, старіння, визначення статі, 

проростання насіння, росту коренів, утворення бульб, фототропізму, адаптації 

(Chini et al., 2016; Wasternack, Strnad, 2016). Протекторні ефекти екзогенної ЖК 

за дії засолення, посухи, гіпо- та гіпертермії, ультрафіолетового опромінення 

залежать від виду рослини і концентрації гормону (Liu et al., 2012; Sharma, Laxmi, 

2016). У рослин ячменю, вирощених у водній культурі з додаванням ЖК, за 

осмотичного стресу зріс вміст ендогенної АБК, зменшилось ушкодження 

клітинних мембран завдяки гальмуванню перекисного окислення ліпідів, 

підвищилась посухостійкість (Bandurskaetal., 2003). Встановлений захисний 

ефект метилжасмонату (МеЖК) на функціонування фотосинтетичного апарату 

пшениці за посухи. Зафіксовано зниження продихової провідності та швидкості 

транспірації, ефективне використання води, ріст активності супероксид-

дисмутази, пероксидази, каталази та зниження вмісту малонового діальдегіду 

(Ma et al., 2014a). Екзогенний МеЖК, завдяки посиленню антиоксидантного 

захисту, пом’якшив ефекти ультрафіолетового опромінення на рослини ячменю 

(Fedina et al., 2009). За дії УФ-опромінення у рослин пшениці під впливом 

метилжасмонату зросла активність супероксиддисмутази, пероксидази, 

відбулось накопичення проліну та антоціану, збільшився вміст хлорофілів a і b, 

зросли максимальний потенційний і ефективний квантові виходи, швидкість 

транспорту електронів (Liu et al., 2012). За екзогенної обробки ЖК у багатьох 

рослин посилювався синтез антоціану. Припускають, що специфічний жасмонат 

індукований білок F-box активує експресію генів біосинтезу антоціану DFR, 

LDOX та UF3GT (Shan et al., 2009). Антоціани разом з іншими флавоноїдами 

здатні зв’язувати АФК, серед яких пероксид водню, синглетний кисень, 

супероксидгідроксил та пероксидні радикали (Gould et al., 2002).Фоліарна 

обробка 21-добових рослин рису 10 мкМ розчином МеЖК посилювала синтез 

білків, задіяних у захисті від наслідків механічного стресу (Bertini et al., 2019). За 

умови забруднення ґрунту миш’яком МеЖК покращував ріст і врожайність рису 

завдяки пом’якшенню окислювального стресу, активації ферментів 

антиоксидантного захисту та аскорбатглютатіонового циклу, зростанню вмісту 

хлорофілу та ендогенної ЖК. МеЖК пригнічував експресію генів білків-

транспортерів заліза та миш’яку в клітинах кореня, що зменшувало накопичення 

важких металів і сприяло переміщенню заліза в надземну частину (Mousavi et al., 

2020). За умови забруднення миш’яком екзогенний MeЖК впливав на сигналінг 

ЖК, поглинання, транслокацію та детоксикацію важкого металу в рослинах рису 
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(Verma et al., 2020). Фоліарна обробка рослин рису МеЖК посилювала активність 

антиоксидантних ферментів і ліпоксигенази, індукувала синтез ЖК, внаслідок 

чого зменшувався токсичний вплив кадмію (Singh, Shah, 2014). ЖК та її похідні 

з участю сигнальних посередників та у взаємодії з іншими компонентами 

гормональної системи здатна індукувати як універсальні, так і досить специфічні 

фізіологічні реакції, необхідні для виживання та збереження продуктивності 

злаків за екстремальних умов. 

Брасиностероїди (БС) – подібні до стероїдних гормонів тварин 

фітостероїди, задіяні в регуляції росту, формування судинної системи, розвитку 

квітів і плодів (Arora et al., 2008). БС успішно використовуються для 

пом’якшенні негативних ефектів абіотичних стресів. В активації захисних 

систем за дії БС беруть участь ключові компоненти сигнальної мережі рослинних 

клітин, зокрема, АФО і кальцій. Так, показано, що ефекти підвищення активності 

антиоксидантних ферментів і розвиток теплостійкості проростків пшениці, 

спричинювані обробкою 24-епібрасиноліду (24-ЕБЛ), залежали від кальцієвого і 

АФО-гомеостазу і усувалися під дією антагоністів кальцію та антиоксидантів 

(Kolupaev et al., 2014). Праймування насіння кукурудзи та рису 28-

гомобрасинолідом (28-ГБЛ) та 24-ЕБЛ за сольового стресу покращувало ріст, 

активувало антиоксидантні ферменти, підвищувало фотосинтетичну активність, 

зменшувало перекисне окиснення ліпідів і вміст малонового діальдегіду 

(Anuradha, RamRao, 2003; Arora et al., 2008; Agami, 2013; Sharma et al., 2013). 

Фоліарна обробка 24-ЕБЛ за солового стресу сприяла накопиченню біомаси та 

зростанню площі листків пшениці (Shahbaz et al., 2008), підвищувала 

врожайність, збільшувала розмір і масу зерна (Ali et al., 2008). Праймування 

зернівок розчинами 24-ЕБЛ та 28-ГБЛ і наступна фоліарна обробка рослин 

пшениці у фазу формування колосу за посухи активували ферменти азотного 

обміну, зменшували пошкодження клітинних мембран (Sairam, 1994), 

підвищували врожайність (Janeczko et al., 2010). Після праймування зернівок 

проса розчинами 24-ЕБЛ і 28-ГБЛ за гіпертермії та посухи підвищилось 

виживання проростків. Зафіксовані активація супероксиддисмутази, каталази, 

гваяколпероксидази та зменшення вмісту малонового діальдегіду. Протекторний 

ефект 24-ЕБЛ виявився виразнішим. В умовах ґрунтової посухи праймовані 

розчином 24-ЕБЛ зернівки краще проростало і мали вищу активність 

антиоксидантних ферментів (Vayner et al., 2014). БС посилювали ріст рослин 

рису завдяки покращенню асиміляції СО2, зменшенню втрат води, активації 

синтезу проліну, антоціанів і розчинних фенольних сполук. Ефективнішою 

виявилась фоліарна обробка розчинами 24-ЕБЛ і 28-ГБЛ (Farooq et al., 2009). 
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Обробка 24-ЕБЛ проростків жита напередодні холодової акліматизації 

підвищувала морозостійкість (Pociecha et al., 2016). 24-ЕБЛ нейтралізував 

негативні ефекти низької температури на ріст і розвиток кукурудзи (Singh et al., 

2012). В умовах гіпертермії після обробки розчином 24-ЕБЛ покращувалась 

фотосинтетична активність рослин рису (Thussagunpanit et al., 2015) та ячменю 

(Janeczko et al., 2011). Розчин 28-ГБЛ зменшував токсичний вплив засолення на 

проростки кукурудзи, стимулював активність антиоксидантних ферментів і 

зменшував окислювальні пошкодження (Bhardwaj et al., 2008). Характер 

експресії генів, які кодують синтез білків, задіяних у метаболічних процесах за 

стресових умов, вказує на взаємодію БС з іншими фітогормонами при 

формуванні реакцій-відповідей на стрес (Müssig et al., 2006). 

Після використання БС зменшувались та частково пом’якшувались 

токсичні ефекти важких металів. За високої концентрації марганцю в ґрунті 

фоліарна обробка рослин кукурудзи розчином 24-ЕБЛ індукувала зростання 

вмісту фотосинтетичних пігментів, збільшення інтенсивності фотосинтезу, 

накопичення сухої біомаси, зниження вмісту H2O2 та підвищення активності 

антиоксидантних ферментів (Wang et al., 2009). Подібні ефекти виявлені після 

обробки рослин кукурудзи розчином 28-ГБЛ в умовах забруднення нікелем 

(Bhardwaj et al., 2007). Праймування зернівок рису розчином 24-ЕБЛ зменшило 

негативний вплив хрому, знизило концентрацію металу в тканинах, посилило 

системи захисту за рахунок підвищення активності антиоксидантних ферментів 

(Sharma et al., 2016). Після фоліарної обробки препаратами з брасиностероїдами 

залишки пестицидів у рослинах зменшились на 30–70% (Zhou et al., 2015). 

Міжгормональна взаємодія. На рис. 4.2 представлено схему 

міжгормонального сигналінгу при формуванні реакцій-відповідей культурних 

злаків на абіотичні стреси. Взаємодія між ауксинами, гіберелінами, цитокінінами 

та АБК впливала на тривалість розвитку верхівкової, центральної та базальної 

частин колосу ячменю (Hordeum vulgare L.), що забезпечує врожайність та 

адаптованість до зовнішніх чинників і розглядається як можливий механізм 

управління урожайністю цієї культури (Helmy, Hansson, 2019). Динамічні та 

взаємодоповнюючі ефекти ауксинових і цитокінінових сигнальних шляхів 

регулюють розвиток та визначають характер реакцій-відповідей на стрес (Bielach 

et al., 2017). 

Покращання ростових параметрів і врожайності пшениці в умовах 

засолення після праймування зернівок у розчині БАП супроводжувалося 

зростанням вмісту ІОК та зниженням рівня АБК (Iqbal et al., 2006). 
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Рис. 4.2. Міжгормональна взаємодія за умов абіотичних стресів 

 

За посухи після фоліарної обробки листків пшениці розчинами АБК і 

бензиладеніну (БА) зменшувались втрати вологи та маси зерна, біомаси пагонів, 

стабілізувались водний та осмотичний потенціали, вміст цукрів, білків, 

фітогормонів ІОК і ГК3. У прапорцевих листках посилювався синтез проліну, 

зростало співвідношення IОК/ГК3. Обробка рослин розчином АБК була 

ефективнішою на пізніх стадіях дозрівання зерна, тоді як БА – на ранніх. 

Застосування в польових умовах синтетичного аналога AБК запропоновано для 

підвищення посухостійкості та врожайності пшениці (Bano, Yasmeen, 2010). 

Виявлений взаємозв’язок між ефектами екзогенних АБК і СК у резистентного 

(CS) та чутливого до посухи (SQ1) генотипів озимої пшениці. Екзогенні 

фітогормони викликали зменшення довжини листків і коренів обох генотипів. 

Екзогенна АБК в умовах осмотичного стресу індукувала накопичення 

ендогенної АБК у генотипу SQ1, тоді як СК – в обох генотипів пшениці. 

Зневоднення зменшувало врожайність пшениць, особливо чутливого генотипу, 

тоді як використання екзогенних АБК і СК покращувало посухостійкість, 

збільшувало вміст проліну та вуглеводів, стимулювало антиоксидантну 

активність, підвищувало врожайність (Marcińska et al., 2013b). Зв'язування 

активних лігандів ЖК і ГК3 з рецепторами призводило до деградації специфічних 

транскрипційних репресорів білків родин JAZ і DELLA, які пригнічують задіяні 

у захисті та регуляції росту фактори транскрипції. В стресових умовах за 

допомогою молекулярного сигнального каскаду COI1-JAZ-DELLA-PIF рослини 

рису надавали пріоритет захисту з участю жасмонатів, а не посиленню росту за 

дії гіберелінів (Yang et al., 2012). При порівнянні ефектів екзогенних ЖК та АБК 

за умов сольового стресу виявилось, що в коренях рису ЖК активувала 
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пероксидазу, індукувала синтез 32 кДа та 28 кДа поліпептидів, PR-1 та PR-10 

білків, пов’язаних із патогенезом, та білку SalT (saltstress-responsive protein). 

Натомість за обробки рослин АБК накопичення вказаних білків не відбувалось. 

Водночас ЖК не індукувала синтезу LEA-білків (lateembryogenesisproteins), що 

утворювались за дії AБК (Moons et al., 1997). Накопичення осмолітиків, які 

захищають клітини від окислювального стресу, регулюється за взаємодії між 

АБК, БС, цитокінінами, етиленом, жасмонатами та СК (Sharma et al., 2019). 

Фітогормональна інженерія. Рослини синхронізовано реагують на 

стресори завдяки перехрещуванню та взаємодії між різними гормональними 

сигнальними шляхами. Зміни вмісту та співвідношення фітогормонів належать 

до перших реакцій рослин у відповідь на стреси (рис. 4.2). 

Останніми роками особлива увага вчених зосереджена на вивченні 

молекулярних механізмів регулювання синтезу гормонів, їхнього сигналінгу та 

активності. Фітогормональна інженерія відкриває нові можливості для 

підвищення врожайності, вона розглядається як важливий перспективний підхід 

для подолання шкоди, яку завдають несприятливі зовнішні фактори (Raza et al., 

2019a). 

Маніпуляції з генами синтезу та метаболізму цитокінінів дозволяють 

управляти рівнями гормону і підвищувати врожайність культурних злаків. Так, 

мутаціями гену СКХ, що кодує головний фермент інактивації цитокінінів, можна 

досягти збільшення розмірів кореневої системи та покращити архітектуру 

суцвіття ячменю, пшениці, рису, підвищити їхню продуктивність (Chen et al., 

2020). Моделювати стресостійкість можливо, змінюючи експресію генів, які 

кодують ферменти біосинтезу і деградації цитокінінів або специфічні білки-

промотори. Так, рослини ячменю зі зниженим рівнем цитокінінів за рахунок 

оверекспресії СКХ формували більш розвинуту кореневу систему, краще 

переносили посуху, зберігали оводненність і давали більший врожай (Pospíšilová 

et al., 2016; Ramireddy et al., 2018). Рослини рису зі специфічним для суцвіть 

геном OsCKX2 накопичували транс-зеатин, дигідрозеатин, ізопентеніладенін і 

кінетин у флоральній меристемі та відрізнялися підвищеною солестійкістю та 

врожайністю. Їхні листки містили більше фотосинтетичних пігментів і води, 

виявляли менше окисне ушкодження за умов сольового стресу (Joshi et al., 2018). 

Змінюючи експресію генів IPT за допомогою специфічного промотору старіння 

та дозрівання SARK, можна досягти покращання посухостійкості рису (Peleg et 

al., 2011) і мітлиці повзучої (Merewitz et al., 2016). У SARK-модифікованих 

рослин кукурудзи за умов водного дефіциту підтримувався нормальний рівень 

фотосинтезу та продихової провідності (Oneto et al., 2016), а у рису не 



83 

 

змінювалася асиміляція вуглецю та азоту (Reguera et al., 2013). У 

трансформованих рослин мітлиці з активованим геном IPT, який має підвищену 

стійкість до гіпертермії, зростала концентрація багатьох білків, задіяних в 

енергетичному обміні та захисті від стресу (Xu et al., 2010). 
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4.2. Вплив передпосівного праймування екзогенною абсцизовою 

кислотою на ріст і гормональний гомеостаз пшениць за 

температурних стресів 

 

Для підвищення стійкості злаків успішно використовуються, окрім 

селекційних підходів, праймування зернівок і фоліарна обробка рослин 

фізіологічно активними речовинами (Akter, Islam, 2017; Kosakivska et al., 2024a). 

Серед фітогормонів, причетних до формування стресостійкості рослин, провідна 

роль належить абсцизовій кислоті (Войтенко, Косаківська, 2016; Vishwakarma et 

al., 2017; Olds et al., 2018). Праймування насіння фітогормонами є важливим 

засобом для мінімізації втрат у стресових умовах (Muhei, 2018). Передпосівне 

праймування екзогенними фітогормонами впливає на ріст, розвиток і стійкість 

рослин. Проте залишається не до кінця з’ясованим питання, чи вплив екзогенних 

гормонів на ріст є прямим, чи він залежить від змін вмісту та розподілу 

ендогенних гормонів). 

Вплив екзогенної АБК на проростання зернівок і морфофізіологічні 

показники проростків пшениці та спельти. Ми дослідили вплив екзогенної 

АБК на проростання зернівок пшениці та спельти (Косаківська та ін., 2019a). 

Сухі відкалібровані зернівки пшениці та спельти (по 50 од.) замочували на 3 год 

у дистильованій воді, після чого містили в чашки Петрі на фільтрувальний папір, 

зволожений дистильованою водою (контроль) та 10-5–10-7 М розчинами АБК. 

Енергію проростання зернівок і морфофізіологічні показники визначали кожні 

24 год упродовж 3-х діб. Встановлено гальмівний ефект праймування розчинами 

АБК на проростання зернівок пшениці та спельти. Найсильніший гальмівний 

ефект чинила АБК в концентрації 10-5 М (рис. 4.3). 

На 24-ту годину кількість зернівок Triticum aestivum з чітко вираженим 

зародковим коренем і захищеною колеоптилем плюмулою у дослідних рослин 

була вдвічі меншою за контроль (табл. 4.1). За дії АБК в концентрації 10-7 М 

кількість пророслих зернівок наближалась до контролю. Водночас кількість 

зернівок, які наклюнулися і мали прикритий колеоризою корінець, а також 

непророслих зернівок за умов інкубації на 10-5 та 10-6 М розчинах АБК, 

переважала контроль. На 48-му годину за дії АБК в концентрації 10-5 та 10-6 М 

кількість пророслих зернівок залишалася меншою, ніж у контролі й за 10-7 М 

АБК, а енергія проростання зернівок, оброблених гормоном, була в межах 88–

92% (табл. 4.1). 
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Рис. 4.3. Тридобові проростки пшениці Подолянкатаспельти Франкенкорн, вирощені на 

папері, змоченому водою (контроль) та розчинами АБК 10-5–10-7 М 

 

Таблиця 4.1. Вплив екзогенної АБК на проростання зернівок пшениці 

Подолянка (у %) 

 

Зразок 
Пророслі зернівки 

Triticum aestivum 

Зернівки, які 

наклюнулись 

(поява кореня, 

прикритого 

колеоризою) 

Непророслі 

зернівки 

Енергія 

проростання 

зернівок 

24 год інкубації 

Контроль 50 44 6 94 

АБК 10-5М 20 66 14 86 

АБК 10-6М 28 60 12 88 

АБК 10-7М 46 48 6 94 

48 год інкубації 

Контроль 82 15 3 97 

АБК 10-5М 55 33 12 88 

АБК 10-6М 51 39 10 90 

АБК 10-7М 73 19 8 92 

 

У дослідах з полб’яною пшеницею Triticum spelta були досліджені 

особливості проростання зернівок за наявності луски та без неї (табл. 4.2 та 4.3). 

Енергія проростання зернівок спельти Франкенкорн була вищою у порівнянні з 

пшеницею Подолянка. З’ясувалося, що за відсутності луски через 24 год після 

замочування понад 90% зернівок наклюнулись, тоді як пророслих зернівок із 

чітко вираженим зародковим коренем не було. На 48-му годину інкубації 

зафіксовано появу пророслих зернівок. Найменше їх спостерігали за інкубації на 
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10-5 М АБК. Енергія проростання оброблених гормоном зернівок становила 90–

94% (табл. 4.2). 

 

Таблиця 4.2. Вплив екзогенної АБК на проростання зернівок спельти 

Франкенкорн без лусок (у %) 

 

Зразок 
Пророслі 

зернівки  

Зернівки, які 

наклюнулись  

Непророслі 

зернівки 

Енергія 

проростання 

зернівок 

24 год інкубації 

Контроль не було  94 6 94 

АБК 10-5М не було 90 10 90 

АБК 10-6 М не було 92 8 92 

АБК 10-7 М не було 92 8 92 

48 год інкубації 

Контроль 14 82 4 96 

АБК 10-5 М 6 84 10 90 

АБК 10-6 М 16 74 10 90 

АБК 10-7 М 18 76 6 94 

 

За наявності луски на 24-ту годину кількість зернівок із чітко вираженим 

зародковим корінцем і захищеною колеоптилем плюмулою становила 65–83%, а 

гальмівний ефект спостерігався після інкубації на 10-5 М розчині АБК. Енергія 

проростанняскладала 100% (табл. 4.3). 

 

Таблиця 4.3. Вплив екзогенної АБК на проростання зернівок спельти 

Франкенкорн за наявності луски (у %) 

 

Зразок 

Пророслі 

зернівки (чітко 

виражено)  

Зернівки, які 

наклюнулись  

Непророслі 

зернівки 

Енергія 

проростання 

зернівок 

24 год інкубації 

Контроль 78 22 не було 100 

АБК 10-5 М 65 35 не було 100 

АБК 10-6 М 83 17 не було 100 

АБК 10-7 М 81 19 не було 100 

48 год інкубації 

Контроль 92 8  не було 100 

АБК 10-5 М 82 18 не було 100 

АБК 10-6 М 86 14 не було 100 

АБК 10-7 М 94 6 не було 100 
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Рис. 4.4. Вплив екзогенної АБК на лінійні показники органів проростків пшениці Подолянка 

та спельти Франкенкорн 

 

Істотно відрізнялись види пшениць за динамікою накопичення сирої 

біомаси проростків. У пшениці цей показник збільшився за інкубації на розчинах 

АБК (10-6 та 10-7 М), тоді як у спельти частково зменшився на 2-у та 3-ю добу. 

Найбільший гальмівний ефект спостерігався на 72-у год інкубації на 10-5 М 

розчині АБК (рис. 4.5). Біомаса тридобових проростків пшениці Подолянка 

зросла, тоді як спельти Франкенкорн зменшилась. 

Вплив екзогенної АБК на морфофізіологічні показники рослин 

пшениці та спельти за короткотривалої дії високої температури. Ми 

проаналізували вплив екзогенної АБК (10-6 М) на ріст надземної частини і 

коренів пшениці Подолянка та спельти Франкенкорн. 
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Рис. 4.5. Вплив екзогенної АБК на накопичення біомаси проростками пшениці Подолянка та 

спельти Франкенкорн, мг сирої речовини/проросток 

 

Морфофізіологічні показниками визначали до і після короткотривалого 

теплового стресу (+40 °С, 2 год) на 14-ту добу та в період відновлення рослин на 

21-шу добу. Праймування зернівок пшениці Подолянка розчином АБК призвело 

до подовження коренів і збільшення їхньої біомаси на 9% і 19% відповідно у 

стресованих 14-добових рослин. Натомість у непраймованих рослин біомаса 

коренів зросла на 33% за рахунок підвищення вологості, тоді як довжина 

залишалась без змін (табл. 4.4). Виявлені зміни у характері накопичення біомаси 

коренів після теплового стресу можуть бути наслідком порушень механізмів 

надходження та транспортування води в рослинах. Архітектура кореневої 

системи представлена головним первинним коренем і окремими бічними й 

додатковими коренями. У більшості видів первинний корінь формується під час 

ембріогенезу та є основою кореневої системи, продукуючи бічні корені по всій 

довжині. 

Повідомлялось, що між розвитком кореневої системи та екологічними 

факторами існує тісний зв’язок, а формування бічних коренів за стресових умов 

знаходиться під контролем АБК, яка локалізована переважно в ендодермі та 

забезпечує сигналінг при формуванні реакції на стрес (Duan et al., 2013). 

Праймування зернівок АБК не призвело до суттєвих змін показників сухої маси 

пагонів та коренів (табл. 4.4). 

Вміст сухої речовини належить до індикаторів стратегії використання 

рослинами своїх внутрішніх ресурсів, спрямованих на досягнення компромісу 

між швидкою асиміляцією та ростом, з одного боку, та ефективним збереженням 

запасних речовини в тканинах і органах, з другого (Wilson et al., 1999; Vaieretti et 

al., 2007). За дії теплового стресу цей показник у пагонах та коренях 
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непраймованих рослин пшениці Подолянка зростав на 10% та 12% відповідно, а 

у праймованих не змінювався. 

 

Таблиця 4.4. Вплив короткотривалого теплового стресу (+40 °С, 2 год) на 

морфофізіологічні показники 14-добових рослин Triticum aestivum сорту 

Подолянка та 21-добових рослин після відновлення 

 

Варіант 

Вода  АБК  

контроль 
тепловий 

стрес 
контроль тепловий стрес 

14-та доба 

Надземна 

частина:  

висота, см 

29,6±1,2 30,8±1,5 28,2±1,3 29,9±1,5 

біомаса, 

мг/рослину 
165,2±4,6 167,8±8,4 145,6±7,3* 148,4±7,4* 

суха маса, мг/г 

сирої речовини 
20,8±1,3 23,0±1,2 20,7±1,0 21,5±1,5* 

Корені:  

довжина, см 
7,8±0,4 7,9±0,4 8,1±0,4 8,8±0,5* 

біомаса, 

мг/рослину 
47,7±2,6 63,6±3,2 54,1±2,7* 64,8±3,2 

суха маса, мг/г 

сирої речовини 
8,2±0,4 9,2±0,5 8,8±0,4 8,9±0,5 

21-ша доба 

Надземна 

частина:  

висота, см 

44,0±2,2 42,7±2,1 43,4±2,2 39,1±2,0* 

біомаса, 

мг/рослину 
323,5±16,2 312,2±15,6* 316,4±15,8* 243,9±12,2* 

суха маса, мг/г 

сирої речовини 
50,8±2,5 42,1±2,1 47,1±2,4* 

33,2±1,7* 

 

Корені:  

довжина, см 
16,6±0,8 14,9±0,7 16,3±0,8 14,2±0,7 

біомаса, 

мг/рослину 
98,7±4,9 81,5±4,1 75,0±3,8* 73,5±3,9* 

суха маса, мг/г 

сирої речовини 
14,7±0,7 11,4±0,6 11,5±0,6* 9,9±0,5 

Примітка: * – достовірна відмінність при P ≤ 0,05 порівняно праймовані рослини з 

непраймованими; представлені дані є середніми значеннями ± SE, n = 90. 

 

Отримані нами результати свідчать про те, що за стресових умов стратегія 

адаптації проростків пшениці була спрямована на збереження запасних речовин. 

Праймування зернівок розчином АБК стабілізувало зміну ростових показників, 
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індукувало ріст кореневої системи в контролі та нівелювало гальмівний ефект 

короткотривалої гіпертермії на подовження коренів озимої пшениці. 

У контрольних умовах за показниками висоти і біомаси надземної частини 

та коренів переважали 21-добові непраймовані рослини. Впродовж їхнього росту 

суха маса надземної частини непраймованих рослин збільшилася в 2,4 раза, а в 

праймованих – удвічі. Подібна тенденція спостерігалась і для коренів, де суха 

маса в непраймованих рослин збільшилася в 1,8, а у праймованих – у 1,3 раза 

(табл. 4.4). У післястресовий період всі морфометричні показники дослідних 

рослин поступалися контрольним. Після відновлення довжина та біомаса коренів 

контрольних рослин зменшилася на 10% і 17% відповідно, тоді як біомаса 

коренів праймованих рослин не зазнала суттєвих змін. У період відновлення 

зафіксовано значне зменшення сухої маси для надземної частини: у контрольних 

рослин на 17%, у праймованих на 30%. Суха маси коренів у непраймованих 

рослин знижувалась на 22%, у праймованих – на 14% (табл. 4.4). Праймування 

зернівок розчином АБК сприяло мінімізації негативного короткотривалої впливу 

високої температури на ріст і розвиток кореневої системи в період відновлення 

озимої пшениці.  

За контрольованих умов праймування зернівок спельти сорту Франкенкорн 

10-6 М розчином АБК призводило до зменшення висоти і біомаси надземної 

частини 14-добових рослин і не впливало на довжину та біомасу коренів (табл. 

4.5). 

Після короткотривалої дії високої температури біомаса надземної частини 

та коренів праймованих рослин дещо збільшувалась, тоді як їхні розміри 

залишалися без змін. Тепловий стрес не впливав на висоту надземної частини та 

довжину коренів непраймованих рослин, проте викликав зменшення їхньої 

біомаси на 10% і 5% відповідно (табл. 4.5). Після теплового стресу суха маса 

надземної частини 14-добових непраймованих рослин спельти зменшувалась на 

13%, а праймованих дещо зростала. Також спостерігали зниження сухої маси 

коренів праймованих рослин на 20%, тоді як у непраймованих рослин цей 

показник суттєво не змінювався. На 21-шу добу після відновлення у 

непраймованих рослин зафіксовано зменшення довжини коренів на 19% та 

біомаси на 12%, тоді як у праймованих рослин довжина кореня зменшилась на 

13%, біомаса – на 19%, а суха маса – на 33% (табл. 4.5). 
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Таблиця 4.5. Вплив короткотривалого теплового стресу (+40 °С, 2 год) на 

морфофізіологічні показники 14-добових рослин Triticum spelta сорту 

Франкенкорн та 21-добових рослин після відновлення 

 

Варіант 

Вода АБК 

контроль 
тепловий 

стрес 
контроль тепловий стрес 

14-та доба 

Надземна 

частина:  

висота, см 

29,1±1,6 28,9±1,4 27,0±1,4* 26,5±1,3* 

біомаса, 

мг/рослину 
192,0±9,6 171,5±8,6 166,1±8,3* 176,2±8,8 

суха маса, мг/г 

сирої речовини 
26,7±1.3 23,3±1,2 22,4±1,2* 24,5±1,2* 

Корені:  

довжина, см 
12,3±0,6 12,1±0,6 12,6±0,6 12,2±0,6 

біомаса, 

мг/рослину 
112,6±5,6 106,5±5,3 115,0±5,8* 120,1±7,0* 

суха маса, мг/г 

сирої речовини 
24,5±1,5 25,2±1,6 27,0±1,7* 21,6±1,1* 

21-ша доба 

Надземна 

частина:  

висота, см 

44,0±2,2 42,8±2,1 44,1±2,2 43,8±2,2* 

біомаса, 

мг/рослину 
231,7±11,6 229,0±11,5 238,6±11,6 242,4±12,1* 

суха маса, мг/г 

сирої речовини 
43,4±2.1 42,0±2,0 34,4±1,7* 33,7±1,6* 

Корені:  

довжина, см 
15,4±0,8 12,5±0,6* 14,9±0,8 12,9±0,6 

біомаса, 

мг/рослину 
146,4±7,3 128,1±6,4 163,2±8,2* 132,3±6,6* 

суха маса, мг/г 

сирої речовини 
25,3±1,4 24,4±1,4 35,6±1,8* 23,8±1,2 

Примітка: * – достовірна відмінність при P ≤ 0,05 порівняно праймовані рослини з 

непраймованими; представлені дані є середніми значеннями ± SE, n = 90. 

 

Отже, надземна частина рослин спельти сорту Франкенкорн, зернівки яких 

були праймовані розчином АБК, краще відновлювалась після короткотривалого 

теплового стресу. 

Вплив екзогенної АБК на гормональний гомеостаз рослин пшениці та 

спельти за короткотривалої дії високої температури. Успішне вирощування 



92 

 

високопродуктивних стресостійких зернових культур вимагає глибокого 

розуміння механізмів протікання та управління метаболічними і ростовими 

процесами, в яких провідна роль належить фітогормональній системі. 

Фітогормони стимулюють толерантність і сприяють пристосуванню рослин до 

різноманітних стресових чинників. Рослини синхронізовано реагують на 

стресори завдяки перехрещуванню та взаємодії між різними гормональними 

сигнальними шляхами. Зміни вмісту та співвідношення фітогормонів належать 

до перших реакцій рослин у відповідь на дію стресорів. Рослинний гормон АБК 

є важливим інструментом у формуванні стійкості рослин. Оскільки 

універсальною реакцією на дію будь-якого стресору є зростання вмісту 

ендогенної АБК, обробка екзогенним гормоном може сприйматися рослиною як 

стресовий сигнал і запускати клітинні захисні механізми (Tuteja, 2007).  

Ми проаналізували вплив теплового стресу на характер накопичення та 

розподіл ендогенних фітогормонів у рослинах озимої пшениці сорту Подолянка 

(Косаківська та ін., 2021) та спельти сорту Франкенкорн (Kosakivska et al., 2022c), 

вирощених із зернівок, праймованих екзогенною АБК (10-6 М). Вивчались 14-

добові рослини, які зазнали впливу короткотривалого теплового стресу (+40 °С, 

2 год) і 21-добові рослини після відновлення.  

За умови праймування зернівок сумарний вміст АБК у пшениці та спельти 

перевищував контрольні показник на 46,3% та 8,3% відповідно, тоді як після 

короткотривалої дії високої температури ці показники у пшениці зрівнялись з 

контрольними, натомість у спельти вміст гормону був на 21,1% вищим. На 21-

шу добу після відновлення вміст гормону у праймованих рослин пшениці зріс, 

тоді як у спельти зменшився. Гормон домінував у надземній частині всіх 

досліджених зразків (рис. 4.6). 

Після короткотривалої дії високої температури вміст СК у праймованих 

рослинах пшениці зменшився, однак був на 21,3% вище за контроль. Натомість 

у спельти кількість гормону в праймованих рослинах зросла і перевищила 

контроль. Сумарний вміст гормону в праймованих рослин пшениці Подолянка 

та спельти Франкенкорн на 21-шу добу після відновлення був на 14,1% та 16,6% 

нижче, ніж у непраймованих рослин. СК домінувала у надземній частині всіх 

досліджених зразків (рис. 4.7). 
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Рис. 4.6. Вплив короткотривалого теплового стресу (+40 °С, 2 год) на вміст і розподіл АБК в 

органах 14-добових рослин пшениці Подолянка та спельти Франкенкорн і в 21-добових 

рослинах після відновлення за праймування зернівок екзогенною АБК, нг/г сирої речовини. 

Позначення (тут і далі в рисунках): К – рослини, вирощені на воді, АБК+ – рослини, вирощені 

з праймованих розчином АБК (10-6 M) зернівок 

 

 
Рис. 4.7. Вплив короткотривалого теплового стресу (+40 °С, 2 год) на вміст і розподіл СК в 

органах 14-добових рослин пшениці Подолянка та спельти Франкенкорн та у 21-добових 

рослин після відновлення за праймування зернівок екзогенною АБК, нг/г сирої речовини 

 

Після теплового стресу вміст ІОК у праймованих рослинах пшениці та 

спельти зменшився. При цьому гормон домінував у коренях пшениці та в 

надземній частині спельти. Сумарний вміст гормону в рослинах пшениці 

поступався на 13,1% контролю, натомість у спельти був на 37,5% вище за 

контроль. На 21-шу добу після відновлення в контрольних рослинах пшениці та 

спельти сумарний вміст ІОК зменшився, тоді як у праймованих рослинах 

пшениці відбулись незначні зміни (у межах похибки на 3,6%), а в рослинах 

спельти рівень гормону зріс на 47,9%. Загалом у відновлених праймованих 
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рослинах пшениці та спельти вміст ІОК був на 66% та 50% вищим, ніж у контролі 

(рис. 4.8). 

 

 
Рис. 4.8. Вплив короткотривалого теплового стресу (+40 °С, 2 год) на вміст і розподіл ІОК в 

органах 14-добових рослин пшениці Подолянка та спельти Франкенкорн і у 21-добових 

рослинах після відновлення за праймування зернівок екзогенною АБК, нг/г сирої речовини 

 

У 14-добових праймованих рослинах пшениці сумарний вміст ГК3 був на 

6% вищим, ніж у непраймованих рослин, тоді як у рослин спельти на 22,2% 

нижчим. Після короткотривалої дії високої температури вміст гіберелінів у 

праймованих і контрольних рослинах пшениці зменшився і майже вирівнявся. 

Водночас у праймованих рослин спельти рівень гібереліну на 31,9% поступався 

контрольному показнику. На 21-шу добу в праймованих рослинах пшениці та 

спельти вміст ГК3 був на 15,3% та 9,3% вищим, ніж у непраймованих 

відновлюваних рослин пшениці. Гормон домінував у коренях всіх досліджених 

зразків пшениці та в надземній частині спельти, за виключенням коренів спельти 

в період відновлення (рис. 4.9). 

Загалом, після короткотривалого теплового стресу накопичення 

фітогормонів у коренях 14-добових праймованих рослин пшениці та спельти 

зменшилось. Праймування позитивно вплинуло на підтримку гіберелінового 

гомеостазу. У період відновлення у коренях праймованих рослин збільшився 

вміст СК і знизився рівень ендогенної АБК. Отримані результати засвідчили 

пролонгований ефект праймування зернівок екзогенною АБК, що дозволяє 

припустити участь гормону в індукції захисного механізму за умов 

короткотривалої дії високої температури шляхом регулювання балансу 

ендогенних фітогормонів у надземній частині та коренях озимої пшениці й 

спельти. 
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Рис. 4.9. Вплив короткотривалого теплового стресу (+40 °С, 2 год) на вміст і розподіл ГК3 в 

органах 14-добових рослин пшениці Подолянка та спельти Франкенкорн та у 21-добових 

рослинах після відновлення за праймування зернівок екзогенною АБК, нг/г сирої речовини 

 

Цитокініни та АБК проявляють антагоністичну активність під час 

регулювання росту та адаптації рослин до абіотичних стресів. АБК допомагає 

рослинам уникнути дії стресору, регулюючи процес закриття продихів, 

прискорюючи старіння листків та уповільнюючи ріст рослини, індукуючи 

біосинтез захисних LEA протеїнів (Rehman et al., 2022; Malini et al., 2023). 

Цитокініни, навпаки, гальмують закриття продихів і старіння листків (Verslues, 

2016). Отримані нами результати засвідчили, що за вмістом цитокінінів 14-

добові рослини спельти сорту Франкенкорн у контролі та експерименті значно 

переважали рослини пшениці, проте на 21-шу добу після відновлення більше, 

ніж удвічі поступались рослинам пшениці (Kosakivska et al., 2024b). Зміни в 

накопиченні ендогенних цитокінінів у відповідь на екзогенну обробку AБК 

виявились більш виразними в коренях пшениці сорту Подолянка (рис. 4.10). 

У роботі Nishiyama et al. (2011) повідомлялось, що рослини зі зниженим 

рівнем цитокінінів відзначались значною стресостійкістю, яка була пов’язана з 

надчутливістю до АБК. Разом із цим дефіцит цитокінінів спричинив пригнічення 

активності ключових генів біосинтезу АБК, що призвело до значного зниження 

рівня гормону. Експресія генів ізопентеніл-трансферази, залучених до синтезу 

активних цитокінінів, пригнічувалась після обробки рослин АБК, що призводило 

до зниження вмісту цих гормонів. Такі факти вказують на існування механізмів 

взаємної регуляції між метаболізмом цитокінінів і АБК, які лежать в основі 

процесів, що формують адаптацію рослин до стресів. АБК модулює активність 

цитокінінових сигнальних протеїнів RRA і RRB (Huang et al., 2018). За участю 
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АБК відбувається транскрипція цитокінінових RRA генів, які беруть участь у 

регулюванні цитокінінового сигнального шляху та негативно впливають на ріст 

надземної частини (Leibfried et al., 2005; Zhao et al., 2010). На метаболізм і 

сигналінг цитокінінів разом із АБК негативно діють СК та жасмонати (Naseem et 

al., 2015; Albrecht, Argueso, 2017). 

 

 

 
Рис. 4.10. Вміст і розподіл цитокінінів в органах 14-добових рослин пшениці Подолянка та 

спельти Франкенкорнпісля короткотривалої дії високої температури (+40 °С, 2 год) та на 21-

шу добу після відновлення за праймування зернівок екзогенною АБК, нг/г сирої речовини 

 

Взаємодія між цитокінінами та АБК відіграє важливу роль у контролі 

подовження коренів. Так, індуковане АБК пригнічення транспорту цитокінінів 

від коренів до надземної частини гальмувало ріст коренів рослин ячменю за 

високих концентрацій нітратів і фосфатів у ґрунті (Vysotskaya et al., 2021). Ми 

показали, що праймування зернівок розчином АБК індукувало зміни 

цитокінінового гомеостазу в 14-добових рослин пшениці та спельти за впливу 

теплового стресу та у 21-добових після відновлення. У праймованих рослин 
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пшениці стрес спричиняв накопичення цитокінінів із домінуванням у надземній 

частині (рис. 4.10). Такі зміни були обумовлені збільшенням вмісту переважно 

iП, а в коренях – т-З та iП, які належать до активних домінуючих цитокінінів 

(Hwang, Sakakibara, 2006). Однак рівні всіх форм цитокінінів у надземній частині 

праймованих рослин були нижчими за контроль, тоді як у коренях – вищими, за 

виключенням т-ЗОГ. Натомість у надземній частиніпісля стресу відмічалось 

зниження рівнів усіх форм цитокінінів у надземній частині та збільшення в 

коренях за рахунок накопичення переважно ізопентенільних форм. Сайт 

цитокінінів знаходився в коренях, де їхній вміст був у 2,1 раза вище, ніж у 

надземній частині. Праймовані рослини за сумарним вмістом цитокінінів 

переважали контроль внаслідок накопичення у надземній частині всіх форм, за 

виключенням т-ЗР (рис. 4.10). 

Цитокоініни впливають на функціональні та структурні складові 

фотосинтезу (Hönig et al., 2018). Зокрема, в рослинах ячменю, пшениці та 

кукурудзи за стресових умов вони забезпечували підтримку вмісту хлорофілу на 

функціональному рівні (Yaronskaya et al., 2006; Zavaleta-Mancera et al., 2007; 

Yang et al., 2016a). У рослин пшениці жаростійкого сорту пшениці Ятрань 60 

після теплового стресу в надземній частині зростав вміст цитокінінів 

ізопентенільної форми (Косаківська та ін., 2015). В роботі Rivero et al. (2010) 

показано, що експресія генів ізопентеніл трансферази, які кодують ключову 

ланку в біосинтезі цитокінінів у рослин тютюну, запобігає деградації 

фотосинтетичних білкових комплексів під час посухи. Ми встановили, що 

фотосинтетичний апарат пшениці та спельти виявився досить чутливим до 

теплового стресу у фазу тривоги, на що вказують ультраструктурні перебудови 

хлоропластів і зниження вмісту фотосинтетичних пігментів (Babenko et al., 2014, 

2019а, b). Стійкі мутанти пшениці характеризуються тривалішим збереженням 

зеленого листка та уповільненим старінням (Thomas, Howarth, 2000), що 

розглядається як результат змін у метаболізмі та трансдукції цитокінінових 

сигналів (Thomas, Ougham, 2014). Відомо, що імпорт цитокініну розглядається як 

сигнал для фотосинтетичної акліматизації (Boonman et al., 2007). Ми встановили, 

що після відновлення на 21-шу добу вегетації вміст цитокінінів у надземній 

частині праймованих рослин пшениці збільшився за рахунок зеатинових форм, 

тоді як у коренях він зменшився за рахунок т-З та іП. Рівні цитокінінів у 

надземній частині праймованих рослин після відновлення були вищими, ніж у 

контролі (рис. 4.10). Зростання вмісту цитокінінів у надземній частині, на нашу 

думку, позитивно впливає на фотосинтетичну активність за дії теплового 

стресу.Вміст цитокінінів у коренях 21-добових праймованих рослин пшениці 
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зрівнявся із контролем. Натомість у 21-добових праймованих рослин 

спельтикількість всіх форм цитокінінів зменшилась, за виключенням т-ЗР у 

коренях. Сумарний вміст цитокінінів у надземній частині та коренях 

праймованих рослин був однаковим. На відміну від пшениці рівні цитокінінів в 

органах відновлених рослин спельти не досягли показників 21-добових 

контрольних рослин. Пролонгований ефект праймування виявився у збільшенні 

рівня гормону в надземній частині та зменшенні в коренях пшениці та зниженні 

в обох органах спельти (рис. 4.10). 

Отримані нами результати продемонстрували вплив екзогенної АБК на 

гормональний гомеостаз пшениці та спельти за короткотривалої дії теплового 

стресу. Було виявлено пролонгований ефект праймування на баланс і розподіл 

ендогенних фітогормонів та ростові показники, що дає підставу розглядати 

застосування екзогенної АБК для праймування зернівок з метою підвищення 

стресостійкості злаків. 
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4.3. Вплив передпосівного праймування екзогенною абсцизовою 

кислотою на ріст і гормональний гомеостаз пшениць за дії помірної 

ґрунтової посухи 

 

Через антропогенний вплив на ґрунт і порушення у водопостачанні, а також 

глобальні зміни клімату ґрунтові посухи стали основною абіотичною загрозою, 

яка гальмує метаболічні процеси, пригнічує ріст і розвиток рослин, що 

призводить до зниження врожайності (Iqbal et al., 2021). Посуха викликає 

закриття продихів, зменшує надходження вуглекислого газу до хлоропластів, 

порушує фотосинтез (Hu et al., 2019) і сповільнює ріст надземної частини (Lind 

et al., 2015). Гормональний гомеостаз і міжгормональна взаємодія мають 

вирішальне значення для виживання рослин у стресовому середовищі, оскільки 

завдяки їм функціонують сигнальні шляхи, які ініціюють каскад реакцій і 

налаштовують відповідні морфологічні, фізіологічні та молекулярні адаптаційні 

процеси (EL Sabagh et al., 2022). У рослинах озимої пшениці та спельти на ранніх 

етапах вегетації посуха індукувала накопичення ендогенної АБК та зменшення 

рівня ІОК (Kosakivska et al., 2022a). В умовах посухи на тлі накопичення 

ендогенної AБК і зменшення рівнів ендогенних IОК, т-ЗР та ГК1+3 

спостерігалось зниження вмісту білків і вуглеводів у зернівках, що негативно 

впливало на врожайність пшениці (Xie et al., 2003). Під час посухи у коренях 

пшениці накопичувались ауксини, які регулювали споживання води вдень і 

вночі, модулювали гідравлічні властивості, підтримували водопостачання та 

збільшували врожайність (Sadok, Schoppach, 2019). 

Вплив екзогенної АБК на морфофізіологічні показники рослин пшениці 

та спельти за дії помірної ґрунтової посухи. Початковий етап росту пшениці 

надзвичайно чутливий до посухи. Висока посухостійкість на стадії сходів 

визначає успішність усіх наступних етапів і, зрештою, впливає на врожайність 

(Xue et al., 2014). Ступінь в’янення листків, кількість днів до в’янення, тривалість 

збереження зеленого забарвлення, а також показники сирої та сухої маси листків 

та відносний вміст води в них належать до основних ознак, які використовуються 

при визначенні посухостійкості пшениці (Basuetal., 2016; Rebetzke et al., 2016). 

Ми дослідили вплив праймування зернівок розчином АБК на ростові показники 

18-добових рослин пшениці Подолянка та спельти Франкенкорн за помірної 

ґрунтової та 21-добових рослин після відновлення. Рослини пшениці та спельти 

по-різному реагували на помірну ґрунтову посуху (4 доби без поливу). Висота 

надземної частини пшениці Подолянка була на 6,7% меншою порівняно з 

контролем, проте її біомаса зросла на 6,4% (табл. 4.6). 
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Таблиця 4.6. Вплив праймування зернівок розчином АБК (10-6 М) на 

морфофізіологічні показники 18-добових рослин Triticum aestivum L. сорту 

Подолянка, які зазнали впливу помірної ґрунтової посухи (4 доби без поливу) та 

21-добових рослин у період відновлення 

 

Варіант 

досліду 

Висота 

надземної 

частини, 

cм 

Біомаса/ 

суха маса 

надземної 

частини, 

мг 

Вологість 

надземної 

частини, 

% 

Довжина 

коренів, 

см 

Біомаса/ 

суха маса 

коренів, 

мг 

Вологість 

коренів, 

% 

Без стресу (18-та доба) 

Контроль 33,6±1,7 
223,7±11,2/ 

35,8±1,8 
84,7±4,2 12,2±0,6 

51,5±2,6/ 

10,2±0,5 
80,8±4,0 

AБК+ 

рослини 
30,4±1,5 

180,1±9,1*/ 

32,4±1,6 
82,0±4,1 14,5±0,7* 

72,7±3,6*/ 

15,3±0,8* 
78,9±3,9 

Помірна ґрунтова посуха (18-та доба) 

Контроль 31,4±1,6 
166,0±8,3/ 

35,9±1,8 
78,4±3,9 11,4±0,6 

48,6±2,4/ 

10,8±0,5 
77,7±3,9 

AБК+ 

рослини 
29,3±1,5 

176,6±8,8*/ 

35,7±1,8 
79,8±4,0 13,3±0,6 

59,4±3,0*/ 

11,5±0,1 
80,6±4,0* 

Відновлення (21-ша доба) 

Контроль 31,6±1,5 
210,3±2,5/ 

43,1±1,7 
83,8±4,2 12,1±0,6 

81,0±4,3/ 

13,1±0,7 
84,6±4,2 

AБК+ 

рослини 
40,5±2,0* 

328,6±16,4*/ 

44,7±2,2 
86,4±4,3* 12,6±0,6 

131,3±6,6

*/ 

18,8±0,9* 

80,6±4,0* 

Примітка: * – достовірна відмінність при P ≤ 0,05 порівняно з контролем; представлені дані є 

середніми значеннями ± SE, n = 90. 

 

Показники вологості та сухої маси майже не змінилися. Довжина коренів 

пшениці була на 16,7% більшою порівняно з контролем, при цьому біомаса та 

суха маса перевищували показники контрольних рослин відповідно на 22,2% та 

6,5%. Зростання вологості було в межах похибки (на 3,7%). Рослини пшениці 

добре відновлювалися після посухи. Так, на 21-шу добу висота надземної 

частини перевищувала контрольні висоту та біомасу на 29% і 56,3% відповідно. 

Показники сухої маси та вологості були близькими до контрольних. Майже за 

однакової довжини і вологості коренів показники біомаси та сухої маси 

праймованих рослин були відповідно на 62,1% і 43,5% вищими, ніж у 

контрольних рослин (табл. 4.6). 
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У 18-добових праймованих рослин спельти Франкенкорн після помірної 

ґрунтової посухи висота надземної частини була на 13,7% меншою, а біомаси на 

12,2% більшою, ніж у контрольних рослин (табл. 4.7). 

 

Таблиця 4.7. Вплив праймування зернівок розчином АБК (10-6М) на 

морфофізіологічні показники 18-добових рослин Triticum spelta L. сорту 

Франкенкорн, які зазнали впливу помірної ґрунтової посухи (4 доби без поливу) 

та 21-добових рослин у період відновлення 

 

Варіант 

досліду 

Висота 

надземної 

частини, 

cм 

Біомаса/ 

суха маса 

надземної 

частини, 

мг 

Вологість 

надземної 

частини, 

% 

Довжина 

коренів, 

см 

Біомаса/ 

суха маса 

коренів, 

мг 

Вологість 

коренів, 

% 

Без стресу (18-та доба) 

Контроль 34,5±1,7 
204,7±10,2/ 

28,2±1,4 
86,2±4,3 14,2±0,7 

139,9±7,1/ 

22,9±1,1 
80,1±4,0 

AБК+ 

рослини 
33,2±1,7 

201,7±10,2/ 

27,4±1,4 
86,4±4,3 14,7±0,7 

158,1±7,9*/ 

34,1±1,7* 
78,4±3,9 

Помірна ґрунтова посуха (18-та доба) 

Контроль 32,2±1,6 
156,0±8,3/ 

25,4±1,3 
83,2±4,2 12,5±0,6 

109,5±5,5/ 

18,8±0,9 
83,8±4,2 

AБК+ 

рослини 
27,1±1,4* 

175,1±8,8*/ 

24,3±1,2 
86,1±4,3 13,0±0,7 

111,3±5,6/ 

20,4±1,1 
85,3±4,3 

Відновлення (21-ша доба) 

Контроль 34,6±1,5 
184,8±9,2/ 

29,8±1,5 
83,9±4,2 12,9±0,6 

124,3±6,2/ 

19,4±1,0 
84,4±4,2 

AБК+ 

рослини 
37,5±1,9* 

207,4±0,4*/ 

24,3±1,3* 
81,7±4,1 13,3±0,7 

149,5±7,5*/ 

23,9±1,2* 
84,0±4,2 

Примітка: * – достовірна відмінність при P ≤ 0,05 порівняно з контролем; представлені дані є 

середніми значеннями ± SE, n = 90. 

 

Показники сухої маси та вологості дещо зросли (у межах похибки). Корені 

праймованих рослин були на 4,0% довше, а суха маса на 8,5% більше, ніж у 

контролі. Після відновлення поливу на 21-шу добу праймовані рослини спельти 

переважали контроль за показниками висоти та біомаси надземної частини, 

відповідно на 8,4% та 12,2%, однак поступались за показником сухої маси на 

18,5%. Корені праймованих рослин відновлювались краще. Хоча показник 

довжини коренів був на рівні контролю, однак біомаса та суха маса переважали, 

відповідно на 20,3% і 23,2%, а вологість була дещо нижчою (табл. 4.7). 
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Підтримка росту коренів має важливе значення для адаптації рослин до 

умов посухи. Так, накопичення АБК у коренях люцерни за умов посухи 

індукувало їхній ріст і розгалуження, оптимізувало будову кореневої системи, 

корелювало зі зростанням біомаси коренів і надземної частини (Li et al., 2022). 

За низького водного потенціалу АБК стимулювала видовження коренів 

кукурудзи (Spollen et al., 2000). Біомаса та вологість коренів знаходились на рівні 

контролю. В умовах посухи екзогенна АБК підвищувала відносний вміст води та 

показник сухої маси листків кукурудзи (Zhang et al., 2012). Відновлення росту та 

накопичення біомаси є ознаками успішної реабілітації (Sallam et al., 2019). 

Наші дослідження показали, що завдяки праймуванню зернівок пшениці та 

спельти розчином АБК підвищилась посухостійкість рослин на ранніх етапах 

вегетації. Це виявилось, насамперед, у розвиткові кореневої системи та 

збереженні вологоємності надземної частини. Ми спостерігали в’янення листків 

пшениці та спельти на 4-ту добу після припинення поливу, при цьому листки 

зберігали зелене забарвлення. У праймованих рослин пшениці й спельти зросли 

показники сирої та сухої маси коренів. Водночас зменшилась висота надземної 

частини, а за рахунок підвищення вологості зросла їхня сира маса. Зафіксоване 

нами збільшення вмісту ендогенної АБК у праймованих рослин 

супроводжувалось посиленням росту кореневої системи та збереженням 

оводненості надземної частини молодих рослин пшениці й спельти за умов 

помірної ґрунтової посухи. Відновлення праймованих рослин пшениці й спельти 

відбувалось більш успішно, ніж контрольних рослин і відзначалось подальшим 

ростом коренів. Витривалішими до дії помірної ґрунтової посухи виявились 

рослини пшениці Подолянка. 

Вплив екзогенної АБК на гормональний гомеостаз рослин пшениці та 

спельти за дії помірної ґрунтової посухи. Пластичність рослин, їхня здатність 

до адаптації за стресових умов опосередковується мережею перехресних 

сигнальних каскадів різних класів фітогормонів, які відіграють центральну роль 

у координації росту та розвитку. АБК є головним хімічним стресовим сигналом, 

який передається від коренів до надземної частини, гальмує ріст листків, індукує 

закриття продихів, допомагає рослині уникнути дегідратації. АБК задіяна у 

надбанні системної стійкості, яка відіграє ключову роль у виживанні рослин під 

час стресу (Suzuki et al., 2013). 

Ми показали, що праймування зернівок розчином АБК призвело до 

диференційованих змін у накопиченні, розподілі та співвідношенні між 

ендогенними фітогормонами в органах рослин пшениці Подолянка та спельти 

Франкенкорн. Помірна ґрунтова посуха індукувала зростання вмісту ендогенної 
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АБК в обох видів пшениць. Більш чутливими до впливу посухи виявились 

праймовані рослини спельти Франкенкорн, у яких рівень ендогенної АБК у 2,2 

рази перевищував такий у рослин пшениці Подолянка. У рослинах спельти АБК 

домінувала в надземній частині, у пшениці – в коренях. У відновлювальний 

період вміст ендогенної АБК у праймованих рослин пшениці та спельти 

зменшився, а її рівні у надземній частині і коренях в обох видів були близькими 

(рис. 4.11). 

 

 
Рис. 4.11. Вміст АБК в органах 18-добових рослин Triticum aestivum L. сорту Подолянка і 

Triticum spelta L. сорту Франкенкорн після помірної ґрунтової посухи (4 доби без поливу) та 

на 21-шу добу після відновлення (нг/г сухої речовини). Позначення (тут і далі в рисунках): К 

– рослини, вирощені на воді, АБК+ – рослини, вирощені з праймованих розчином АБК (10-6 

M) зернівок 

 

Помірна ґрунтова посуха призводила до зменшення вмісту ендогенної ІОК 

у праймованих рослин пшениці та збільшення у спельти. Рівні гормону в обох 

видах були вище за контроль. Після відновлення поливу показники вмісту ІОК в 

обох видів збільшились і були вищими, ніж у контролі. У рослинах пшениці ІОК 

домінувала в коренях, у спельти – в надземній частині. Концентрація ендогенної 

ІОК у рослинах пшениці Подолянка була вдвічі вище, ніж у рослинах спельти 

Франкенкорн (рис. 4.12). В роботі Ashraf et al. (2006) показано, що взаємодія між 

ІОК та АБК сприяла розвиткові бічних коренів у рослин ячменю за умов посухи, 

тоді як дослідженнями Duetal. (2013) встановлено, що порушення взаємозв’язку 

між ІОК та АБК на рівні біосинтезу призводило до зменшення посухостійкості 

рослин рису. Фоліарна обробка рослин пшениці розчином АБК на стадії цвітіння 

посилювала накопичення ендогенних АБК та ІОК (Yang et al., 2014). Показано 

також, що трансгенні рослини Solanum lycopersicum з надмірною експресією гену 
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фактору транскрипції SlGRAS40, причетного до розвитку рослин за дії стресів, 

були стійкішими до дії посухи, що відбулось через зміни у сигналінгу ауксинів 

та гіберелінів (Liu et al., 2017). 

 

 
Рис. 4.12. Вміст ІОК в органах 18-добових рослин Triticum aestivum L. сорту Подолянка і 

Triticum spelta L. сорту Франкенкорн після помірної ґрунтової посухи (4 доби без поливу) та 

на 21-шу добу після відновлення, нг/г сухої речовини 

 

Праймування зернівок розчином АБК індукувало зростання вмісту ГК3 у 

нестресованих рослинах пшениці Подолянка, тоді як у рослинах спельти 

Франкенкорн накопичення гормону відбулось після впливу помірної ґрунтової 

посухи. У праймованих рослинах пшениці та спельти рівні ГК3 були значно 

вищими, ніж у контролі. У пшениці сайт накопичення гормону знаходився в 

корені, тоді як у спельти – в надземній частині. У відновлюваних праймованих 

рослинах обох видів рівні ГК3 зросли. У 21-добових рослинах пшениці та 

спельти гормон домінував у коренях. При цьому вміст гормону в коренях був 

відповідно у 2,5 та 1,1 раза вище. ніж у надземній частині (рис. 4.13). 

Встановлене нами зростання вмісту ендогенних ІОК та ГК3 у праймованих 

рослинах пшениці та спельти за умов посухи було одним із чинників посилення 

росту коренів і формування стійкості.  

Гібереліни розглядаються переважно як гормони, що контролюють ріст і 

розвиток рослин, однак вони також відіграють важливу роль в адаптації до 

стресів (Plaza-Wuthrich et al., 2016; Urano et al., 2017; Kosakivska, Vasyuk, 2021). 

Зокрема, показано, що негативний регулятор гіберелінового сигналінгу 

SPINDLY зменшував посухостійкість арабідопсису шляхом інтеграції стресових 
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сигналів навколишнього середовища через взаємодію між гіберелінами та 

цитокінінами (Qin et al., 2011). 

 

 
Рис. 4.13. Вміст ГК3 в органах 18-добових рослин Triticum aestivum L. сорту Подолянка та 

Triticum spelta L. сорту Франкенкорн після помірної ґрунтової посухи (4 доби без поливу) та 

на 21-шу добу після відновлення, нг/г сухої речовини 

 

Праймування зернівок розчином АБК індукувало накопичення ендогенної 

СК у рослинах пшениці Подолянка та спельти Франкенкорн (рис. 4.14). Не 

зважаючи на відмінності у кількісних показниках вмісту ендогенної СК в обох 

видів, інтенсивність накопичення гормону після дії стресу була вище у рослин 

спельти (на 55%). Загалом в стресованих 18-добових рослинах пшениці кількість 

ендогенної СК була вищою, а в рослинах спельти нижчою за контроль. У 

відновлюваних рослинах пшениці та спельти вміст СК зменшився і не досяг 

показників контролю. Вміст СК у рослинах пшениці в усіх варіантах досліду був 

значно вищим, ніж у спельти, а центром локалізації гормону в обох видів була 

надземна частина (рис. 4.14). У формуванні посухостійкості рослин задіяна СК, 

яка регулює процес закриття продихів та антиоксидантну активність (Miura, 

Tada, 2014). Праймування розчинами АБК і СК зернівок посилювало 

посухостійкість пшениці, збільшувало вміст розчинних цукрів, зміни в 

білковому спектрі, підвищувало стабільність мембран, стимулювало збільшення 

врожаю (Khan et al., 2012). Після обробки розчином АБК у прапорцевих листках 

пшениці підвищувався вміст АБК, СК, ГК3 і ЗР та знижувався рівень З (Luo et al., 

2021). 
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Рис. 4.14. Вміст СК в органах18-добових рослин Triticum aestivum L. сорту Подолянка та 

Triticum spelta L. сорту Франкенкорн після помірної ґрунтової посухи (4 доби без поливу) та 

на 21-шу добу після відновлення, нг/г сухої речовини 

 

Цитокініни підтримують нормальний ріст і розвиток в умовах осмотичного 

стресу, захищають фотосинтетичні процеси та посилюють посухостійкість (EL 

Sabagh et al., 2022). АБК та цитокініни антагоністично регулюють численні 

процеси розвитку та формування реакцій на стрес. АБК пригнічує гени 

ізопентенілтрансферази та зменшує концентрацію цитокінінів в умовах посухи, 

натомість цитокініни пригнічують активність SnRK2 кіназ, які є ключовими 

ферментами в АБК-індукованій відповіді за стресових умов (Huang et al., 2018; 

Gupta et al., 2020). Цитокінінам відводиться роль праймінг-агенту та регулятору 

компромісів між процесами росту та захистом рослин (Cortleven et al., 2019). 

Ми показали, що в коренях праймованих рослин пшениці Подолянка за 

умов посухи порівняно з нестресованими праймованими рослинами 

накопичувались активні форми т-З та іП, натомість у коренях спельти 

Франкенкорн зросла кількість кон'югованої форми т-ЗОГ та іП. У надземній 

частині АБК+ стресованих рослин пшениці збільшився вміст т-ЗОГ та іП, тоді 

як у цих самих органах спельти зменшилась кількість т-ЗОГ та т-ЗР (рис. 4.15, 

4.16). Загалом, після обробки зернівок розчином АБК загальний вміст 

цитокінінів у АБК+ стресованих рослинах пшениці збільшився, тоді як у 

рослинах спельти він залишився незмінним порівняно з нестресованими 

праймованими рослинами (табл. 4.8). 
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Таблиця 4.8. Сумарний вміст цитокінінів у 18-добових рослинах Triticum 

aestivum L. сорту Подолянка та Triticum spelta L. сорту Франкенкорн після 

помірної ґрунтової посухи (4 доби без поливу) та на 21-шу добу після 

відновлення, мкг/г сухої речовини 

 

Зразок 18-та доба 21-ша доба 

Без стресу Помірна ґрунтова 

посуха 

Відновлення 

Контроль АБК+ 

рослини 

Контроль АБК+ 

рослини 

Контроль АБК+ 

рослини 

T. aestivum 6,26 ± 0,31 3,6±0,18* 5,3 ± 0,27 5,5 ± 0,28 3,9 ± 0,19 3,1±0,16* 

T. spelta 1,7 ± 0,09 1,8 ± 0,09 1,9 ± 0,09 1,9 ± 0,09 2,1 ± 0,11 0,8±0,041* 

Примітка: * – відмінності вірогідні при P ≤ 0,05 відносно контролю; дані є середнім значенням 

± SE; n = 6. 

 

Після помірної ґрунтової посухи в надземній частині та коренях 

праймованих рослин пшениці сумарний вміст цитокінінів підвищився 

відповідно на 55% і 52%. Ці показники були на 1,5% вищими та на 7,7% нижчими 

від показників, зафіксованих у надземній частині та коренях контрольних 

рослин. У надземній частині підвищився рівень iП і т-ЗОГ, тоді як вміст т-З 

зменшився в обох органах (рис. 4.15). 

 

 
Рис. 4.15. Вміст цитокінінів в органах 18-добових рослин Triticum aestivum L. сорту Подолянка 

після помірної ґрунтової посухи (4 доби без поливу) та на 21-шу добу після відновлення, нг/г 

сухої речовини 

 

Після відновлення поливу сумарний вміст цитокінінів у надземній частині 

та коренях праймованих рослин пшениці знизився відповідно на 60% і 22%. Ці 



108 

 

показники були на 44% меншими та на 12,6% більшими від показників, 

зафіксованих у надземній частині та коренях контрольних рослин. У надземній 

частині зменшився вміст iП і т-ЗОГ, а в коренях відбулось накопичення т-З і т-

ЗОГ (рис. 4.15). 

Після помірної ґрунтової посухи сумарний вміст цитокінінів у коренях 

АБК+ рослин спельти зріс у 11,4 раза, що на 74,5% більше, ніж у контролі, а в 

надземній частині – зменшився в 3,7 раза, що на 58% менше, ніж у контролі. У 

надземній частині спостерігалось зменшення вмісту всіх форм цитокінінів, тоді 

як укоренях накопичувались т-ЗОГ, iП та iПA (рис. 4.16). У коренях 21-добових 

праймованих рослин сумарний вміст цитокінінів після відновлення знизився на 

72%, тоді як у надземній частині зміни у вмісті цитокінінів знаходились у межах 

похибки. Сумарний вміст цитокінінів у надземній частині та особливо в коренях 

праймованих рослин спельти був меншим за контроль. Вміст усіх форм 

цитокінінів зменшився та (рис. 4.16). 

 

 
Рис. 16. Вміст цитокінінів в органах 18-добових рослин Triticum spelta L. сорту Франкенкорн 

після помірної ґрунтової посухи (4 доби без поливу) та на 21-шу добу після відновлення, нг/г 

сухої речовини 

 

В цілому, у 18-добових праймованих рослин пшениці Подолянка сумарний 

вміст цитокінінів був на 43% меншим за контроль. Натомість, у 18-добових 

рослинах спельти Франкенкорн таких відчутних змін не зафіксовано. Посуха 

спричинила підвищення вмісту цитокінінів у праймованих рослин обох видів, 

більш суттєво (на 56,8%) – у пшениці. Після відновлення поливу рівень 

цитокінінів у пшениці та спельти знизився відповідно на 43% і 56,8%, що було 

на 19,3% і 62,2% нижче за контроль. В усіх варіантах досліду сумарний вміст 

цитокінінів у пшениці був достовірно вище, ніж у спельти (табл. 4.8). 
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Загалом, екзогенна АБК індукувала зростання вмісту ендогенних АБК та СК 

і зменшення рівнів ІОК і ГК3 у надземній частині пшениці та спельти. В 

праймованих рослинах пшениці значно зменшився вміст іП, тоді як у спельти 

зросла кількість т-ЗОГ. У коренях пшениці спостерігалось накопичення 

ендогенних АБК, ІОК, ГК3 та т-ЗОГ і зменшення вмісту СК, т-ЗтаіП. У коренях 

праймованих рослинах спельти зафіксовано збільшення рівнів АБК, ІОК та СК і 

зниження вмісту ГК3 та всіх форм цитокінінів. 

Наші дослідження виявили суттєві відмінності в реакції на помірну 

ґрунтову посуху фітогормональної системи праймованих і контрольних рослин 

пшениці та спельти. За ґрунтової посухи у праймованих АБК рослин пшениці 

зріс вміст АБК, ІОК, СК та ГК3. Утричі порівняно з контролем збільшився рівень 

ендогенної ГК3 у коренях. Значні зміни відбулись у накопиченні цитокінінів. У 

надземній частині пшениці збільшився вміст т-ЗОГ та іП, тоді як у коренях 

зменшилась кількість т-З і зріс вміст іП. Після помірної ґрунтової посухи вміст 

АБК та ІОК був вищим у праймованих рослин спельти, а кількість СК – у 

контрольних зразках. Кількість ГК3 зменшилась у коренях, але збільшилась у 

надземній частині. Розподіл цитокінінів мав протилежний характер. Їхнє 

зменшення в надземній частині було обумовлено зниженням вмісту всіх за 

виключенням іП-форм, а збільшення в коренях – накопиченням т-ЗОГ, іП та 

іПА. 

Отже, АБК-опосередковані реакції фітогормональної системи рослин 

озимої пшениці та спельти на помірну ґрунтову посуху відзначались певними 

рисами подібності та відмінностями. За умов помірної ґрунтової посухи рослини 

спельти активніше накопичували ендогенну АБК, ніж рослини пшениці. В обох 

видів зросла кількість ІОК і ГК3. Праймовані рослини пшениці переважали за 

вмістом цитокінінів і СК. Отримані результати дозволяють припустити, що у 

формуванні реакції-відповіді на посуху задіяні пролонговані зміни в балансі 

ендогенних фітогормонів, спричинені праймуванням зернівок екзогенною АБК. 

Модель участі фітогормонів у формуванні стресостійкості культурних 

злаків. Специфічні зміни в характері накопичення, локалізації та співвідношенні 

між фітогормонами окремих класів в органах рослин за дії абіотичних стресів 

належать до головних чинників, що активують стрес-протекторні системи та 

формують стратегію адаптації. Отримані експериментальні відомості щодо 

особливостей функціонування фітогормональної системи та участі окремих 

фітогормонів у формуванні адаптивних реакцій на несприятливі кліматичні 

впливи дозволили нам створити оригінальну модель участі фітогормонів у 

формуванні стресостійкості культурних злаків (рис. 4.17). Цитокініни, 
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гібереліни, ауксини, саліцилова та абсцизова кислоти допомагають рослинам 

протистояти стресу шляхом посилення антиоксидантного захисту, підвищення 

фотосинтетичної активності, стабілізації мембран, індукції поділу клітин, 

регуляції продихової активності, стимуляції росту кореневої системи, засвоєння 

води та поживних речовин. 

 
 

Рис.4.17. Схематична модель участі фітогормонів у формуванні стресостійкості злаків 

 

У рослин існують чіткі механізми сприйняття стресових сигналів і 

формування відповіді на них. Реакції індукуються після надходження сигналу, 

але також сформувався механізм пам’яті, що дозволяє підготувати відповідь на 

повторний стрес. Дослідження останнього десятиліття виявили, що стресова 

пам’ять включає епігенетичну регуляцію, транскрипційне праймування, 

конформаційні зміни білків або специфічні гормональні й метаболічні 

сигнатури. Завдяки ендогенній гормональній регуляції та застосуванню 

екзогенних фітогормонів можна суттєво підвищити стресостійкість рослин. 

Кожному класу фітогормонів належить певна роль у формуванні реакції на 

стресор. Хоча біосинтез і сигнальні шляхи різних гормонів вивчені досить 

детально, міжгормональна взаємодія, спрямована на пом’якшення негативних 

наслідків абіотичних стресів, потребує подальших досліджень. 
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РОЗДІЛ 5. Дослідження структурно-функціональних змін злаків за 

дії негативних кліматичних факторів 

 

5.1. Вплив абіотичних стресів на пігментний комплекс злаків 

 

Серед фізіологічних процесів фотосинтез посідає особливе місце, оскільки 

є головним джерелом надходження органічних речовин і енергії, необхідних для 

життєдіяльності рослинного організму. У функціонуванні складної 

фотосинтетичної системи задіяні різні компоненти, серед яких фотосинтетичні 

пігменти, ФСІ та ФСІІ (перша та друга фотосистеми), система транспорту 

електронів, шляхи відновлення CO2 та ін. Будь-яке пошкодження цієї системи, 

спричинене стресом, здатне призвести до зменшення фотосинтетичної 

активності та зниження продуктивності (Ashraf, Harris, 2013). Зміни у 

пігментному комплексі належать до неспецифічних реакцій культурних злаків 

на дію таких абіотичних стресорів, як висока і низька температура та  посуха 

(Косаківська та ін., 2017; Романенко та ін., 2023; Efeoglu, Terzioglu, 2009; 

Balouchi, 2010; Bijanzadeh, Emam, 2010; Reda, Mandoura, 2011; Babenko et al., 

2014). Хлорофіл a є головним пігментом, задіяним у процесі фотосинтезу, тоді 

як хлорофілу b належить допоміжна функція, спрямована на підвищення 

світлозбиральної спроможності пігментного комплексу в короткохвильовій 

області червоного світла (Киризий и др., 2014). Повідомлялось, що зменшення 

вмісту хлорофілів a і b у рослинах гороху та пшениці, що зазнали дії високої 

температури, було обумовлено пригніченням біосинтезу пігментів та/або їхньою 

прискореною деградацією (Dutta et al., 2009; Reda, Mandoura, 2011). Під час 

посухи в рослинах кукурудзи зменшувався вміст хлорофілу b, що змінювало 

співвідношення на користь хлорофілу a (Jaleel et al., 2009; Jain et al., 2010). 

Збільшення вмісту хлорофілу b і каротиноїдів за дії низької температури 

посилювало фотозахист (Adam, Murthy, 2014). Антиоксидантні ефекти 

каротиноїдів обумовлені здатністю цих пігментів нівелювати ушкодження, 

індуковані через утворення триплетного хлорофілу та синглетного кисню 

(Gómez-Sagasti et al., 2023). 

Показники вмісту та співвідношення фотосинтетичних пігментів 

характеризують стан фотосинтетичного апарату за стресових умов. Так, 

показник суми хлорофілів (a+b) корелює з продуктивністю фотосинтезу і є 

визнаним тестом для оцінювання впливу стресового фактору на рослини (Bailey 

et al., 2004). Ступінь сформованості та функціонування фотосинтетичного 

апарату за дії несприятливих екологічних факторів характеризує показник 
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співвідношення між хлорофілами а і b. Зміни співвідношення хлорофілів 

відбуваються переважно за рахунок змін вмісту хлорофілу а (Yangetal., 2021). 

Велична співвідношення хлорофілів а/b розглядається як одна з ознак 

фотосинтетичної активності (Johnston et al., 1989), а за стресових умов 

використовується як маркер стійкості (Loggini et al., 1999). Інформативним 

показником інтенсивності ушкодження фотосинтетичного апарату є 

співвідношення суми хлорофілів і загальних каротиноїдів (a+b/каротиноїди). 

Чим менша величина такого співвідношення, тим більше ушкодження, 

обумовлене старінням або дією стресора (Kosakivska et al., 2020a). 

У лабораторних умовах ми дослідили вплив короткотривалих 

температурних стресів і помірної ґрунтової посухи на пігментний комплекс 

пшениці Подолянка, спельти Франкенкорн і жита Богуславка. За контрольних 

умов найвищий вміст хлорофілів був у рослинах жита, загальних каротиноїдів у 

спельти, а найнижчі показники вмісту хлорофілів і загальних каротиноїдів – у 

пшениці. За дії короткотривалого теплового стресу вміст фотосинтетичних 

пігментів у листках 14-добових рослини обох видів пшениць і жита достовірно 

зменшився порівняно з контролем (P ≤ 0,05). При цьому рослини озимої пшениці 

та жита виявилися більш чутливими до впливу високої температури, порівняно 

з рослинами спельти. У листках пшениці Подолянка вміст хлорофілів а і b та 

каротиноїдів зменшився відповідно на 24, 21 та 14%, тоді як у листках спельти 

Франкенкорн відповідно на 8, 18 та 23%. Значне зниження вмісту 

фотосинтетичних пігментів виявлено у рослинах жита, в яких вміст хлорофілів а 

і b та каротиноїдів зменшився відповідно на 21, 27 та 35% (рис. 5.1). 

 

 

Рис. 5.1. Вплив короткотривалого теплового стресу (+40 °С, 2 год) на вміст фотосинтетичних 

пігментів у листках 14-добових рослин пшениці Подолянка, спельти Франкенкорн і жита 

Богуславка 
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Після короткотривалого теплового стресу показник суми хлорофілів a+b 

зменшився у рослинах пшениці Подолянка та жита Богуславка в 1,3 раза, а в 

рослинах спельти Франкенкорн у 1,1 раза. Співвідношення хлорофілів a/b у 

рослинах спельти й жита зріс відповідно на 12% і 9%, тоді як у рослинах пшениці 

був на рівні контролю (різниця в межах похибки на 4,7%). Показник 

співвідношення суми хлорофілів a+b та каротиноїдів у рослинах спельти й жита 

за теплового стресу збільшився відповідно на 15% і 19%, натомість у пшениці 

зменшився на 11% (табл. 5.1). 

Загалом, короткотривалий тепловий стрес індукував зменшення вмісту 

хлорофілів у всіх досліджених видів злаків, найбільш виразні зміни відбулись у 

листках жита. Показник відношення хлорофілів a/b і суми хлорофілів a+b до 

каротиноїдів зріс у листках спельти та жита і не змінився у пшениці. Найбільш 

стійким до дії високої температури виявився пігментний комплекс пшениці. 

 

Таблиця 5.1. Вплив короткотривалого теплового стресу (+40 °С, 2 год) на 

співвідношення фотосинтетичних пігментів у листках 14-добових рослин 

пшениці Подолянка, спельти Франкенкорн і жита Богуславка 

 

Варіант 

експерименту 

Хл (a+b), мг/г сирої 

речовини 
Хл а/b 

Співвідношення 

(a+b)/каротиноїди 

Triticum aestivum 

Контроль 1,433±0,04 2,73 6,63 

Тепловий стрес 1,099±0,07* 2,60 5,91 

Triticum spelta 

Контроль 1,751±0,002 2,88 4,86 

Тепловий стрес 1,571±0,06* 3,24 5,61 

Secale cereale 

Контроль 2,124±0,07 1,78 6,8 

Тепловий стрес 1,637±0,04* 1,93 8,06 

Примітка: * – достовірна відмінність при P ≤ 0,05 порівняно з контролем; представлені дані є 

середніми значеннями ± SE, n = 9. 

 

За короткотривалої дії низької позитивної температури (охолодження) 

вміст фотосинтетичних пігментів у листках 14-добових рослини пшениці 

Подолянка та жита Богуславка зменшився, тоді як у рослин спельти 

Франкенкорн не відрізнявся від контролю. У листках пшениці відбулось 

незначне зменшення вмісту хлорофілу(на 9%), тоді як вміст хлорофілу b був 

близький до контрою, а вміст загальних каротиноїдів знизився на 42% порівняно 

з контролем. У листках спельти вміст хлорофілів а і b та каротиноїдів 
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статистично не відрізнявся від контролю (P ≥ 0,05). Значне зниження вмісту 

фотосинтетичних пігментів за дії низької позитивної температури відбулось у 

рослинах жита, в яких кількість хлорофілу а зменшився на 17%, хлорофілу b – на 

42%, загальних каротиноїдів – на 36% порівняно з контролем (рис. 5.2). 

 

 
Рис. 5.2. Вплив низької позитивної температури (+4 °С, 2 год) на вміст фотосинтетичних 

пігментів у листках 14-добових рослин пшениці Подолянка, спельти Франкенкорн і жита 

Богуславка 

 

Показник суми хлорофілів a+b у рослинах пшениці та спельти статистично 

не відрізнявся від контролю (P ≥ 0,05), тоді як у рослинах жита зменшився в 1,3 

раза. Водночас співвідношення хлорофілів a/b у рослинах спельти і пшениці 

зменшилось відповідно на 8% та 11%, натомість у рослинах жита збільшилось 

на 40%. Величина співвідношення a+b/каротиноїди у листках спельти не 

змінилась, тоді як у листках пшениці та жита збільшилась відповідно на 61% та 

15%, що було обумовлено зменшенням загальної кількості каротиноїдів (табл. 

5.2). 

Отже, за короткотривалого холодового стресу в листках жита суттєво 

знизився вміст хлорофілу b і загальних каротиноїдів. Показник співвідношення 

суми хлорофілів a+b/каротиноїди значно зріс у листках пшениці. Пігментний 

комплекс жита виявився найбільш чутливим до дії низької позитивної 

температури, а спельти – найбільш стійким. 

За умов помірної ґрунтової посухи в листках 18-добових рослин пшениці 

Подолянка, спельти Франкенкорн і жита Богуславка зменшився вміст 

фотосинтетичних пігментів. У листках пшениці вміст хлорофілів а і b та 

каротиноїдів знизився відповідно на 15, 8 та 6%, а в листках спельти відповідно 

на 26, 28 та 12%. Значне зниження вмісту фотосинтетичних пігментів виявлено 
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у листках жита, де кількість хлорофілів а і b та каротиноїдів зменшилась 

відповідно на 39, 37 та 18% (рис. 5.3). 

 

Таблиця 5.2. Вплив короткотривалої низької позитивної температури (+4 °С, 2 

год) на співвідношення фотосинтетичних пігментів у листках 14-добових рослин 

пшениці Подолянка, спельти Франкенкорн і жита Богуславка 

 

Варіант 

експерименту 

Хл (a+b), мг/г сирої 

речовини 
Хла/b 

Співвідношення 

(a+b)/каротиноїди 

Triticum aestivum 

Контроль 1,433±0,04 2,73 6,63 

Охолодження 1,347±0,03 2,42 10,69 

Triticum spelta 

Контроль 1,75±0,002 2,88 4,86 

Охолодження 1,82±0,02 2,64 4,67 

Secale cereale 

Контроль 2,124±0,07 1,78 6,8 

Охолодження 1,571±0,03* 2,5 7,8 

Примітка: * – достовірна відмінність при P ≤ 0,05 порівняно з контролем; представлені дані є 

середніми значеннями ± SE, n = 9. 

 

 
Рис. 5.3. Вплив помірної грунтової посухи (4 доби без поливу) на вміст фотосинтетичних 

пігментів у листках 18-добових рослин пшениці Подолянка, спельти Франкенкорн і жита 

Богуславка 

 

Показник суми хлорофілів a+b зменшився у рослинах пшениці в 1,1 раза, 

спельти в 1,4 раза, жита в 1,6 раза (табл. 5.3). Величина співвідношення 

хлорофілів a/b зросла у листках спельти та дещо зменшилась у жита й пшениці. 

Співвідношення a+b/каротиноїдизменшилось у листках жита на 25%, спельти на 

16% і пшениці на 7% (табл. 5.3). 
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Результати наших досліджень показали, що за дії короткотривалих 

теплового та холодового температурних стресів і помірної ґрунтової посухи в 

листках рослин пшениці, спельти й жита відбулись диференційовані якісні та 

кількісні зміни пігментного комплексу. Фотосинтез досить чутливий до змін 

температурного режиму, оскільки температурний стрес викликає дисбаланс між 

світловою енергією, що поглинається фотосистемою та енергією, яка 

витрачається рослиною на метаболічні процеси (Berry, Bjorkman, 1980). За 

оптимальної температури фотосинтез має найвищу ефективність і будь-яке 

відхилення температури від цього оптимального діапазону призводить до 

зниження ефективності фотосинтезу (Li, 2018). Для одних і тих самих видів 

рослин температурний оптимум фотосинтезу нестабільний. Він залежить від віку 

рослини, адаптації до певних температур і може змінюватися впродовж сезону 

(Liu, 2020). Максимальна температура фотосинтезу в середньому на 10–15 °С 

нижче точки теплової депресії. Для більшості С3-рослин помірного поясу 

оптимальна температура знаходиться в діапазоні 20-25 °С (Gong et al., 2009). 

 

Таблиця 5.3. Вплив помірної грунтової посухи (4 доби без поливу) на 

співвідношення фотосинтетичних пігментів у листках 18-добових рослин 

спельти Франкенкорн, пшениці Подолянка та жита Богуславка 

 

Варіант 

експерименту 

Хл (a+b), мг/г сирої 

речовини 
Хл а/b 

Співвідношення 

(a+b)/каротиноїди 

Triticum aestivum 

Контроль 1,180±0,043 1,78 8,70 

Ґрунтова посуха 1,034±0,03* 1,65 8,07 

Triticum spelta 

Контроль 1,420±0,064 1,77 8,95 

Ґрунтова посуха 1,047±0,029* 1,81 7,51 

Secale cereale 

Контроль 1,777±0,078 1,62 8,15 

Ґрунтова посуха 1,102±0,052* 1,57 6,12 

Примітка: * – достовірна відмінність при P ≤ 0,05 порівняно з контролем; представлені дані є 

середніми значеннями ± SE, n = 9. 

 

Хлорофіл є одним з основних компонентів хлоропластів, а його вміст 

позитивно корелює зі швидкістю фотосинтезу. Після теплового стресу у фазу 

тривоги в 14-добових рослинах усіх досліджених видів злаків сума хлорофілів 

a+b зменшилася. При цьому більш стійкими виявились рослини пластичного 

сорту спельти Франкенкорн, а більш уразливими рослини морозостійкого сорту 
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жита Богуславка. У листках пшениці та жита значно зменшився вміст обох 

хлорофілів, натомість у листках спельти – тільки хлорофілу b. Біосинтез 

фотосинтетичних пігментів є однією з перших мішеней, що зазнає впливу 

теплового стресу (Dutta et al., 2009). Пригнічення біосинтезу хлорофілу за дії 

високої температури обумовлене деградацією численних ензимів, задіяних у 

синтезі пігменту (Dutta et al., 2009; Reda, Mandoura, 2011). Автори Cui et al. (2006) 

показали, що тривалий тепловий стрес спричинив зниження показників 

відношення суми хлорофілів a+b до каротиноїдів, а також збільшення показника 

співвідношення хлорофілів a/b у листках вівсяниці високої (Festuca arundinacea), 

що було обумовлено деградацією хлорофілу b через накопичення АФК у 

хлоропластах. Більш виразні зміни спостерігались у чутливого до дії високої 

температури сорту вівсяниці. Реакція на короткотривалу дію високої 

температури виявилась у зміні показника співвідношення хлорофілів a/b, який 

дещо зріс у листках морозостійкого сорту спельти Франкенкорн і холодостійкого 

сорту жита Богуславка, натомість не змінився у рослинах пшениці сорту-

стандарту Подолянка. За теплового стресу у листках спельти та жита збільшився 

також показник відношення суми хлорофілів a+b до каротиноїдів, тоді як у 

пшениці цей показник зменшився. Загалом, отримані результати засвідчили 

досить високий ступінь стійкості досліджених видів злаків до теплового стресу 

у фазу тривоги на початкових етапах вегетації. Найбільш стійким до дії високої 

температури виявився пігментний комплекс пшениці Подолянка. 

За короткотривалої дії низької позитивної температури у листках 14-

добових рослин пшениці та спельти у фазу тривоги показник суми хлорофілів 

знаходився на рівні контролю, натомість у листках жита зменшився, що 

відбулось переважно за рахунок зниження вмісту хлорофілу b. Холодовий стрес 

індукував зменшення вмісту загальних каротиноїдів у пшениці та жита, тоді як 

у спельти суттєвих змін не відбулось. Автори Yang et al. (2021) встановили, що 

низька позитивна температура (+4 °С) негативно впливає на гени синтезу 

каротиноїдів, а динаміка накопичення каротиноїдів залежить від генетичних 

особливостей та фази розвитку. За охолодження показник співвідношення 

хлорофілів a/b у листках жита зріс, натомість у пшениці та спельти зменшився. 

Збільшення показника співвідношення хлорофілів a/b в умовах стресу зазвичай 

пов’язане з розпадом хлорофілу b (Cui et al., 2006), значне зменшення вмісту 

якого відбулось у листках жита. Набагато збільшився показник співвідношення 

суми хлорофілів a+b/каротиноїди в листках пшениці, меншою мірою у жита, що 

пояснюється зменшенням вмісту загальних каротиноїдів за дії низької 

температури. Каротиноїди відіграють незамінну роль у фотосинтезі, включаючи 
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захоплення світла, і є ключовою частиною системи антиоксидантного захисту 

(Simkin et al., 2022). Вони є незамінними сполуками, що задіяні у налагодженні 

зв'язків між рослиною та середовищем (Gómez-Sagasti et al., 2023). 

Після помірної ґрунтової посухи на тлі в’янення листків зменшився вміст 

фотосинтетичних пігментів у листках 18-добових рослин усіх досліджуваних 

злаків. Сума хлорофілів a+b у листках посухостійкого сорту озимої пшениці 

Подолянка суттєво не зменшилась, тоді як в екологічно пластичного сорту 

спельти Франкенкорн зменшилась у 1,4 раза, а в холодостійкого сорту жита 

Богуславка в 1,6 раза, що вказує на зниження фотохімічної активності в рослинах 

спельти та жита і стабільність в рослинах пшениці. Відзначалось (Anjum et al., 

2011), що зниження вмісту хлорофілів відбувається через окислювальне 

пошкодження фотосинтетичного апарату і належить до неспецифічних ознак 

окислювального стресу. У дослідженні Almeselmani et al. (2011) повідомлялось 

про зниження вмісту хлорофілів у листках посухостійких і чутливих генотипів 

твердої пшениці за дії тривалої ґрунтової посухи. При цьому більш виразні 

негативні зміни спостерігались у чутливих сортів. За дії посухи генотипи озимої 

пшениці з високою ефективністю транспірації відзначались підвищеним вмістом 

хлорофілу (Fotovat et al., 2007). Ми спостерігали незначні зміни показника 

співвідношення між хлорофілами у досліджуваних злаків за дії помірної 

ґрунтової посухи. У рослинах пшениці та жита таке співвідношення зменшилось, 

натомість у спельти збільшилось. У посухостійкого генотипу пшениці 

Подолянка співвідношення хлорофілів змінилось внаслідок зменшення вмісту 

хлорофілу a. Натомість, у рослинах спельти й жита вміст обох хлорофілів 

знизився однаково, при цьому більш значні зміни відбулись у рослинах жита. 

Повідомлялось, що у посухостійких генотипів пшениці за стресових умов 

відбулось або незначне збільшення показника співвідношення хлорофілів a/b, 

або його невелике зменшення, тоді як у чутливих до посухи генотипів цей 

показник швидко знижується (Ashraf et al., 1994). За ґрунтової посухи вміст 

каротиноїдів у всіх трьох видах злакових рослин зменшився. Найбільші зміни 

відбулись у рослинах жита, найменші – у рослинах пшениці. Величина 

співвідношення a+b/каротиноїди зменшилась в усіх досліджуваних видів, 

найбільше – у рослинах жита та спельти, що сигналізує про дестабілізацію у 

функціонуванні фотосинтетичного апарату за умов помірної ґрунтової посухи. 

Найбільш стійким до помірної ґрунтової посухи був пігментний комплекс 

пшениці.  
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5.2. Амінокислотний комплекс злаків за дії абіотичних стресів 

 

Абіотичні стреси впливають на метаболізм рослин, активують складні 

біохімічні реакції, спрямовані на захист і підтримку життєдіяльності (Rao et al., 

2006). Амінокислоти (АК) беруть участь у подоланні негативних впливів 

навколишнього середовища, сприяють стійкості до абіотичних стресів і є 

невід’ємною частиною імунної системи рослин (Романенко та ін., 2022; Zeier, 

2013). АК – попередники та складові протеїнів є ключовими компонентами 

метаболічних процесів, беруть участь у багатьох біохімічних реакціях, 

впливають на фізіологічну активність, ріст і розвиток рослин (рис. 5.4). 

 

 
 

Рис. 5.4. Вплив абіотичних стресів на синтез і накопичення амінокислот та функціональна роль 

АК у захисті рослин 

 

Накопичення АК, які виконують функції осморегуляторів, є 

універсальною відповіддю на абіотичні стреси (Ali et al., 2019; Romanenko et al., 

2024). АК беруть участь у регуляції внутрішньоклітинного pH (Hildebrandtetal., 

2015), детоксикації активних форм кисню (АФК) (Sytar et al., 2013), синтезі 

ензимів і попередників вторинних метаболітів (Less, Galili, 2008), діють як 

донори енергії в циклі трикарбонових кислот (Kirma et al., 2012). АК виконують 

регуляторні та сигнальні функції (Häusler et al., 2014), беруть участь у синтезі 

фітогормонів і низькомолекулярних азотистих сполук (Hildebrandt et al., 2015; 

Ali et al., 2019). Стресостійкі рослини накопичують більше АК, ніж чутливі (Ali 

et al., 2019; Romanenko et al., 2024). Збільшення вмісту окремих АК призводить 

до позитивних ефектів під час акліматизації рослин (Hayat et al., 2012), що 
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дозволяє використовувати ці сполуки як біостимулятори в сільському 

господарстві (Noroozlo et al., 2019). 

Температурні коливання відбуваються швидше за зміни інших абіотичних 

факторів та додатково посилюють їхній негативний вплив на ріст і розвиток 

рослин. Під час теплового та холодового стресів у зернових культурах 

відбуваються значні зміни в накопиченні АК на різних етапах вегетації, що 

свідчить про тісний зв’язок між стресовою адаптацією та їхнім рівнем 

(Romanenko et al., 2022, 2024). За високої температури зростає активність 

амінотрансфераз, що призводить до збільшення вмісту АК і протеїнів у фазу 

наливу зерна пшениці (Asthir et al., 2013). У незрілому зерні пшениці тепловий 

стрес індукує зростання вмісту аланіну, аспарагіну, ароматичних АК, ГАМК, що 

позитивно впливає на поживні та антиоксидантні властивості зрілого зерна 

(DeLeonardis et al., 2015). Під дією високотемпературного стресу вміст метіоніну 

та цистеїну в зрілому зерні пшениці підвищувався, але знижувалися врожайність 

і маса зерна (Tao et al., 2018). Гліцин бетаїн (ГБ) і пролін – два основних 

органічних осмоліти, які накопичуються різними видами рослин у відповідь на 

дію екстремальних температур. Вважають, що ці сполуки підтримують нативну 

структуру мембран та активність ензимів (Ashraf, Foolad, 2007). Екзогенне 

застосування гіберелінів або проліну значно підвищувало врожайність за 

температурних стресів (Ashraf, Foolad, 2007). Значне накопичення проліну та 

зростання антиоксидантної активності відмічено в генотипах дикого 

Sorghum bicolor (L.) Moench за умов теплового стресу. Запропоновано 

використовувати ендогенний вміст проліну як маркер для створення 

жаростійких генотипів (Gosavi et al., 2014). 

В умовах посухи підтримка тургору листків досягається шляхом 

осмотичної адаптації, у набутті якої задіяні пролін, сахароза, розчинні вуглеводи 

та гліцин бетаїн, що накопичуються в цитоплазмі та посилюють поглинання води 

з ґрунту. У рослинах пшениці, яка характеризується низьким вмістом 

перерахованих вище речовин, завдяки накопиченню та мобілізації проліну 

зростає стійкість до водного стресу (Nayyar, Walia, 2003). Першою реакцією 

рослин, що зазнали дії водного стресу, є накопичення проліну, завдяки якому 

пом’якшується негативний вплив на стрес (Szabados, Savoure, 2010). 

У лабораторних умовах ми дослідили короткотривалу дію високої і низької 

позитивної температури та помірної ґрунтової посухи на якісний склад і 

кількісний вміст вільних амінокислот (АК) у рослинах озимої пшениці 

Подолянка, спельти Франкенкорн і жита Богуславка (Romanenko et al., 2022, 

2025; Voytenko et al., 2025). Амінокислоти виділяли з висушеної до абсолютно 
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сухої маси надземної частини 14-добових (після дії температурних стресів) та 18-

добових (після дії помірної ґрунтової посухи) рослин пшениці, спельти та жита. 

Наважку (1 г) інкубували в 3%-му розчині сульфосаліцилової кислоти, 

центрифугували впродовж 30 хв при 4000 об/хв. Якісний склад і кількісний вміст 

вільних амінокислот визначали методом іонообмінної рідинно-колонкової 

хроматографії (Hare et al., 1985) в аналізаторі амінокислот ААА Т-399 (Чехія). 

Для реєстрації амінокислот в елюатах використовували пост-колонковий метод 

детекцiїнiнгiдрином. 

У надземній частині контрольних і дослідних 14-добових рослин пшениці, 

спельти та жита було виявлено 17 вільних АК. За контрольних умов у всіх видів 

злаків домінували гліцин, аспарагінова та глутамінова кислоти. Після 

короткотривалого теплового стресу (+40 °С, 2 год) загальний вміст вільних АК у 

надземній частині рослин спельти та жита збільшився на 6% та 14% відповідно, 

тоді як в озимої пшениці зменшився на 3% (рис. 5.5). За короткотривалої дії 

позитивної низької температури (+4 °С, 2 год) загальний вміст вільних АК у 

надземній частині рослин спельти та жита збільшився на 11% та 9% відповідно, 

тоді як в озимої пшениці зменшився на 11% (рис. 5.5). 

 

 
Рис. 5.5. Вплив короткотривалої дії високої та позитивної низької температур на загальний 

вміст вільних АК у надземній частині 14-добових рослин пшениці Подолянка, спельти 

Франкенкорн і жита Богуславка, мкМ/г сухої речовини 

 

Після короткотривалої дії температурних стресів були виявлені значні 

відмінності у накопиченні домінуючих вільних амінокислот у надземній частині 

14-добових рослин. За дії високої температури у рослин пшениці Подолянка 

збільшились рівні фенілаланіну (на 123%) та тирозину (на 60%). Кількісний 

вміст інших вільних АК був близьким до контролю, натомість рівні аргініну та 

глутамінової кислоти зменшились відповідно на 24% і 21% (рис. 5.6). У рослин 

спельти Франкенкорн висока температура індукувала підвищення вмісту всіх 
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вільних АК. Найбільше зросли кількості аргініну (на 151%), проліну (на 105 %), 

ізолейцину (на 104%) і тирозину (на 92%), вміст глутамінової кислоти, цистеїну 

та валіну збільшився на 83% (рис. 5.6). У рослин жита Богуславка за дії високої 

температури спостерігали збільшення вмісту проліну та цистеїну (на 27,5% для 

обох АК), валіну (на 21%) та аспарагінової кислоти (на 20%). Вміст інших 

вільних АК збільшився на 10–16%, а вміст гліцину, метіоніну та тирозину був на 

рівні контролю (рис. 5.6). 

 

 

 

 
Рис. 5.6. Вплив короткотривалої дії високої температури (+40 °С, 2 год) на вміст вільних АК у 

надземній частині 14-добових рослин пшениці Подолянка, спельти Франкенкорн і жита 

Богуславка, % співвідношення до контролю. Позначення(тут і далі в рисунках):Ala – аланін; 

Arg – аргінін; Asp – аспарагінова кислота; Cys – цистеїн; Glu – глутамінова кислота; Gly – 

гліцин; His – гістидин; Ile – ізолейцин; Leu – лейцин; Lys – лізин; Met – метіонін; Phe – 

фенілаланін;Pro – пролін; Ser – серин; Thr – треонін; Tyr – тирозин; Val – валін 
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Короткотривале охолодження індукувало зростання вмісту фенілаланіну 

(на 77%) в надземній частині 14-добових рослин пшениці Подолянка. Рівні 

більшості інших вільних АК зменшились на 10–20%, за винятком цистеїну, вміст 

якого знизився на 35%. Показники рівнів гістидину, лізину й тирозину були 

близькими до контрольних (рис. 5.7). У рослин спельти Франкенкорн за 

короткотривалої дії низької позитивної температури збільшився вміст проліну 

(на 65%), гістидину (на 34%), аспарагінової кислоти (на 22%), ізолейцину (на 

19%), аланіну (на 18%) і гліцину (на 17%). Менш виразні зміни відбулись у 

накопиченні серину та глутамінової кислоти. Натомість показники вмісту лізину, 

лейцину, треоніну та валіну майже не відрізнялись від контрольних, а рівні 

метіоніну й тирозину зменшилися відповідно на 32% і 34% (рис. 5.7). У 

надземній частині рослин жита Богуславка після охолодження домінуючими АК 

були пролін та аспарагінова кислота, вміст яких збільшився відповідно на 23% і 

18%. Кількість інших вільних АК збільшилась на 4–8%, що є несуттєвим 

порівняно з контролем (рис. 5.7). 

У надземній частині контрольних 18-добових рослин озимої пшениці, 

спельти та жита ідентифіковано 17 вільних АК. Домінуючими виявились 

аспарагінова та глутамінова кислоти, гліцин і аланін. За дії помірної ґрунтової 

посухи загальний вміст вільних АК у надземній частині рослин спельти 

Франкенкорн збільшився на 20%, у рослинах пшениці Подолянка знаходився на 

рівні контролю, тоді як у рослинах жита Богуславка зменшився на 36% (рис. 5.8). 

За дії стресу в надземній частині рослин пшениці суттєво підвищився вміст 

фенілаланіну (на 296%), тирозину (на 60%), дещо менше проліну (на 19%) і 

гліцину (на 15%). Рівні аргініну та глутамінової кислоти зменшились на 24% та 

21% відповідно, тоді як лізину, гістидину, треоніну, аланіну, цистеїну, валіну, 

лейцину несуттєво відрізнялись від контролю (рис. 5.9). В надземній частині 

рослин спельти збільшився вміст  аргініну (на 131%), проліну (на 112%), 

фенілаланіну (на 73%), цистеїну (на 63%), гістидину (на 33%), валіну (на 47%), 

тирозину (на 37%), ізолейцину (на 35%) та гліцину (на 28%). Найменш виразні 

зміни відбулись у вмісті лізину, треоніну та глутамінової кислоти. Вміст 

аспарагінової кислоти, серину, аланіну та лейцину несуттєво відрізнявся від 

контрольних показників, тоді як кількість метионіну зменшилась на 22% (рис. 

5.9). 
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Рис. 5.7. Вплив короткотривалого охолодження (+4 °С, 2 год) на вміст вільних АК у надземній 

частині 14-добових рослин пшениці Подолянка, спельти Франкенкорн і жита Богуславка, 

% відношення до контролю 
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Рис. 5.8. Вплив помірної ґрунтової посухи (4 доби без поливу) на загальний вміст АК у 

надземній частині 18-добових рослин пшениці Подолянка, спельти Франкенкорн та жита 

Богуславка, мкМ/г сухої речовини 

 

У надземній частині рослин жита відбулося незначне збільшення рівня 

гістидину (на 6%), тоді як вміст інших вільних АК зменшився в 1,4–2,0 раза. 

Лише кількісний вміст аргініну був близьким до контролю (рис. 5.9). 

В результаті проведеного дослідження нами були встановлені спільні риси 

та видові особливості в динаміці вільних АК у трьох злакових рослин за дії 

температурних стресів і ґрунтової посухи. За загальним вмістом вільних АК в 

контрольних умовах і за дії стресів озима пшениця переважала рослини спельти 

та жита. За контрольних умов у всіх трьох видів злаків домінували гліцин, 

аспарагінова та глутамінова кислоти У надземній частині 14-добових рослин 

спельти та жита після дії високої температури (+40 °С, 2 год) загальний вміст 

вільних амінокислот збільшився, тоді як у рослинах озимої пшениці зменшився. 

Подібні зміни в накопиченні вільних АК спостерігались після охолодження (+4 

°С, 2 год). У рослинах спельти та жита загальний вміст вільних АК збільшився, 

тоді як у рослинах пшениці, навпаки, зменшився. Після помірної ґрунтової 

посухи (4 доби без поливу) у 18-добових рослин спельти загальний вміст вільних 

АК підвищився, тоді як у рослинах жита зменшився. У рослинах пшениці 

показник загального вмісту вільних АК відповідав  контролю. 
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Рис. 5.9. Вплив помірної ґрунтової посухи (4 доби без поливу) на вміст вільних АК у надземній 

частині 18-добових рослин пшениці Подолянка, спельти Франкенкорн і жита Богуславка, % 

відношення до контролю 

 

Нами були визначені міжвидові та стрес-залежні особливості у 

накопиченні окремих вільних АК. Так, після теплового стресу в рослинах 

спельти накопичувались 17 ідентифікованих вільних АК, тоді як після 

холодового стресу зросли рівні проліну, гістидину та аспарагінової кислоти, а 

після посухи – проліну, аргініну, цистеїну та фенілаланіну. Збільшення вмісту 

фенілаланіну спостерігалось в рослинах озимої пшениці після дії всіх трьох 

стресів, а тирозину – після теплового стресу та ґрунтової посухи. В рослинах 
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жита після дії високої температури зросли рівні проліну, цистеїну, валіну та 

аспарагінової кислоти, тоді як після дії низької позитивної температури 

домінуючими були пролін та аспарагінова кислота. Після ґрунтової посухи в 

рослинах жита відбулося незначне збільшення вмісту гістидину, тоді як вміст 

інших вільних АК зменшився. 

Отримані результати продемонстрували різну чутливість амінокислотного 

комплексу молодих рослин зернових культур до дії температурних стресів і 

посухи. В цілому, зафіксовані нами зміни в динаміці вільних АК свідчать про 

значні метаболічні перебудови, які відбуваються в досліджених рослинах у 

відповідь на стресові впливи. 

Переважна більшість вільних АК, які домінують після дії абіотичних 

стресів, беруть активну участь в антиоксидантному захисті рослин (Kumar et al., 

2021). Накопичення тирозину та фенілаланіну рослинами озимої пшениці та 

спельти після теплового стресу й ґрунтової посухи опосередковано свідчить про 

посилення процесів біосинтезу, необхідних для підтримки клітинних функцій 

протеїнів, а також про залучення цих вільних АК у процеси синтезу 

антиоксидантів, які допомагають нейтралізувати АФК і пом’якшують 

окислювальний стрес (Kumar et al., 2021). Тирозин і фенілаланін беруть участь у 

біосинтезі фенілпропаноїдів (Vogt, 2010), які до того ж генерують утворення 

таких вторинних метаболітів, як стильбени, монолігноли, кумарини, 

фітоалексини, антоціани, флавоноїди та фенольні кислоти (Thakur et al., 2021). 

Збільшення вмісту всіх 17 ідентифікованих нами вільних АК у рослинах 

спельти після теплового стресу вказує на адаптивні зміни, що відбуваються в 

рослині. Пролін діє як осмоліт, регулює поглинання та утримання води в 

клітинах, запобігає їхньому зневодненню (Hayat et al., 2012), бере участь у 

стабілізації протеїнів, ензимів і клітинних структур, допомагає підтримувати 

їхню цілісність та функціональність, сприяє знешкодженню АФК (Szabados, 

Savoure, 2010). Накопичення у рослинах спельти аргініну за дії посухи та високої 

температури вказує на посилене продукування оксиду азоту (NO), який відіграє 

важливу роль у формуванні стресової відповіді (Winter et al., 2015). Аргінін є 

попередником у біосинтезі поліамінів, зокрема, путресцину, спермідину та 

сперміну, які зазвичай беруть участь у захисті від окислювального пошкодження 

та сприяють стабілізації клітинних мембран і протеїнів (Mattoo et al., 2015). 

Гістидин відіграє важливу роль у біосинтезі інших АК. Він присутній в 

активних центрах багатьох ензимів, задіяних в антиоксидантному захисті 

(Stepansky, Leustek, 2006; Ingle, 2011). Накопичення гістидину пов'язують із 

синтезом гістидинкіназ, які активують специфічні сигнальні шляхи та реакції, 
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спрямовані на адаптацію рослин і пом'якшення наслідків стресу (Nongpiur et al., 

2012). Ми показали, що вміст гістидину збільшувався у рослинах спельти після 

дії всіх трьох стресів, а у рослинах жита – після ґрунтової посухи. 

Аспарагінова кислота, яка вважається головним депо і транспортером 

азоту, накопичується в значній кількості у відповідь на дію стресів у багатьох 

видів рослин (Lea et al., 2007; Ali et al., 2019). Подібно до проліну, аспарагінова 

кислота діє як осмоліт і антиоксидант, захищає клітини від пошкоджень, 

спричинених надмірним утворенням вільних радикалів (Lea et al., 2007). 

Аспарагінова кислота в значній кількості накопичується одночасно з проліном 

(Romanenko et al., 2024). Ми спостерігали одночасне накопичення цих двох АК 

у рослинах спельти після дії всіх трьох стресів і в рослинах жита після дії 

температурних стресів. 

Накопичення цистеїну спостерігалось у рослинах спельти за дії високої 

температури та ґрунтової посухи. Цистеїн є головним донором сірки для синтезу 

метіоніну таглутатіону (Hell, Wirtz, 2011). Глутатіон відіграє центральну роль у 

детоксикації АФК. Він задіяний у захисті клітин від окислювального 

пошкодження під час посухи (Noctor et al., 2012). 

Після теплового стресу та ґрунтової посухи у рослинах спельти 

підвищився рівень вільних АК з розгалуженим ланцюгом – лейцину, валіну та 

ізолейцину. Вважають, що індукція синтезу цих вільних амінокислот у відповідь 

на абіотичний стрес відіграє певну роль у стійкості рослин (Joshi et al., 2010).  

У численних дослідженнях на прикладі різних зернових культур 

продемонстровано зв'язок між накопиченням вільних АК та адаптацією до 

температурних стресів і посухи. Низька позитивна температура (+4 °C) 

індукувала зростання вмісту глутаміну, проліну, аланіну, аспарагінової кислоти, 

аспарагіну, валіну, треоніну та ізолейцину в проростках пшениці (Naidu et al., 

1991). Дослідження чутливих і стійких до дії низької температури генотипів рису 

показало, що за дії стресу збільшувалось накопичення розчинних протеїнів і 

проліну в стійкого генотипу (Aghaee et al., 2011). У теплостійкого генотипу 

Sorghum bicolor за теплового стресу накопичувався пролін і підвищувався 

антиоксидантний захист, тоді як у чутливого генотипу підвищення вмісту 

проліну та активності антиоксидантних ензимів не спостерігалося. Це дозволило 

розглядати ендогенний пролін як молекулярний біомаркер теплостійкості при 

проведенні селекційних робіт (Gosavi et al., 2014). 

Підвищення вмісту проліну в умовах посухи є однією з неспецифічних 

стресіндукованих реакцій більшості зернових культур (Marcińska et al., 2013a). У 

листках пшениці найактивніше накопичувався пролін (Farshadfar et al., 2008). 
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Значне зростання загального вмісту АК і проліну виявлено в генотипах пшениці 

різної посухостійкості (Mattioni et al., 1999; Kumar et al., 2017; Babenko et al., 

2020). За умови водного дефіциту пролін накопичувався у листках і коренях 

толерантного та чутливого до посухи генотипа пшениці, та його вміст, як і 

загальний вміст АК, був вище в посухостійкого генотипу (Kang et al., 2019). 

Вміст вільних АК, а саме проліну, триптофану та АК з розгалуженим ланцюгом 

(лейцин, ізолейцин, валін), підвищувався під час ґрунтової посухи в 

посухостійких і чутливих генотипах пшениці (Bowne et al., 2012; Michaletti et al., 

2018). В умовах дефіциту води в надземних органах пшениці накопичувалися 

ароматичні АК, особливо триптофан, а також фенілаланін і тирозин (Bowne et al., 

2012; Rahman et al., 2017; Kang et al., 2019). Підвищення рівня цистеїну було 

зафіксовано в польових умовах ярої пшениці впродовж поступової ґрунтової 

посухи (Chen et al., 2004). 

В цілому, отримані результати продемонстрували різну чутливість 

амінокислотного комплексу молодих рослин зернових культур до дії 

температурних стресів і посухи. Зафіксовані зміни в динаміці вільних АК 

свідчать про значні метаболічні перебудови, які відбувались в досліджених 

рослинах у відповідь на стресові впливи. 

Гідролізати органічного походження у підвищенні стресостійкості 

сільськогосподарських культур. Для підвищення стресостійкості та 

врожайності аграрних культур активно використовуються гідролізати білків 

тваринного та рослинного походження. Вони є екологічно безпечними та 

активують фізіологічні й молекулярні механізми, які стимулюють ріст і 

продуктивність рослин, пом'якшують вплив абіотичних стресорів. Їхні основні 

компоненти – суміш вільних амінокислот, оліго- та поліпептидів, які діють як 

сигнальні молекули. Амінокислотні препарати легко засвоюються рослинами, 

транспортуються та використовуються як джерела азоту та вуглецю. Це 

заощаджує енергію, яку витрачає рослина на перетворення органічних речовин, 

синтетичних нітратів та аміаку в амінокислоти. Деякі амінокислоти є 

ефективними хелаторами іонів металів, що значно підвищує засвоєння макро- та 

мікроелементів рослиною, а також сприяє захисту від впливу важких металів. 

Амінокислотні препарати (АП) випускаються у вигляді рідких концентратів, 

розчинного порошку або гранул, їх можна використовувати фоліарно та для 

передпосівного праймування насіння. Ці препарати виробляють шляхом 

хімічного (кислотний і лужний гідроліз), термічного та ферментативного 

гідролізу відходів тваринного походження (епітелій тварин, побічні продукти 

виробництва шкіри, куряче пір'я, казеїн, хітиновмісні відходи виробництва 
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морепродуктів) і рослинної біомаси (насіння та сіно зернобобових, 

складноцвітих, хрестоцвітих, пасльонових) (Colla et al., 2017). У глобальному 

масштабі більшість комерційних АП для використання в сільському 

господарстві виробляється компаніями, розташованими в Італії, Іспанії, США, 

Китаї та Індії. У табл. 5.4 наведені відомості про комерційні АП рослин, які 

мають у своєму складі значний відсоток вільних амінокислот, отриманих із 

тваринної або рослинної сировини шляхом ферментативного гідролізу та 

доступні на ринку для використання в сільському господарстві. Препарати на 

основі амінокислот є мультиплексними антистресантами. Вони допомагають 

відновитись рослинам після негативного впливу низьких або високих 

температур, посухи, засолення, механічних або фізичних ушкоджень. 

 

Таблиця 5.4. Приклади комерційних АК-продуктів тваринного та рослинного 

походження 

 

АК-продукт Активна складова 

% 

вільних 

АК 

Метод 

застосування 
Виробник (країна) 

АК продукти, отримані шляхом гідролізу тваринного білку 

Лінійка 

Terra-

Sorb 

Terra-

Sorb 

лист 

Вільні АК, макро- та 

мікроелементи 
9,3% 

Листова 

обробка 

Bioiberica (Іспанія) 

Terra-

Sorb 

корінь 

Вільні АК, 

органічний азот 
6% 

Полив під 

корінь 

Terra-

Sorb 

компле

кс 

Вільні АК, макро- та 

мікроелементи 
20% 

Листова 

обробка, 

полив під 

корінь 

TerraminPro 
Вільні АК, 

органічний азот 
18% 

Листова 

обробка, 

полив під 

корінь 

Equilibrium 

Вільні амінокислоти, 

полісахариди, 

екстракт водорості 

Ascophyllum nodosum 

15% 
Листова 

обробка 

Ruter AA 
Вільні АК, макро- та 

мікроелементи 
7% 

Полив під 

корінь, 

предпосівна 

обробка 

насіння 

Fertitec (Іспанія) 
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АК-продукт Активна складова 

% 

вільних 

АК 

Метод 

застосування 
Виробник (країна) 

Pepton 85/16 Вільні АК, пептиди 16,5% 

Листова 

обробка, 

полив під 

корінь 

APC Agro, (USA, 

Іспанія) 

Siapton Вільні АК, пептиди 10% 
Листова 

обробка 
IsAgro (США) 

Grower 

Вільні АК, 

органічний азот та 

вуглець, вітаміни, 

фітогормони 

12% 

Листова 

обробка, 

полив під 

корінь 

Uniba TARIM A.Ş 

(Туреччина) 

АК продукти, отримані шляхом гідролізу рослинного білку 

Megafol 

Вільні АК, макро- та 

мікроелементи, 

бетаїни, вітаміни, 

глікозиди, 

фітогормони, 

полісахариди 

28% 

Листова 

обробка, 

полив під 

корінь, 

предпосівна 

обробка 

насіння 

Valagro (Італія) 

AgriFlexAmino 
Вільні АК, 

органічний азот 
40-50% 

Листова 

обробка, 

полив під 

корінь 

Citymax 

Agrochemical (Китай) 

Kaishi 
Вільні АК, 

органічний азот 
13,2% 

Листова 

обробка 

SumiAgroEurope 

(Велика Британія) 

Probiofer(A, B, L) 
Вільні АК, 

органічний азот 
20-80% 

Листова 

обробка, 

полив під 

корінь 

ChaitanyaGroupofIndu

stries (Індія) 

CrossAmino 

Вільні АК, 

органічний азот та 

вуглець 

25% 

Листова 

обробка, 

полив під 

корінь 

Uniba TARIM A.Ş 

(Туреччина) 

Аміностим 

Вільні АК, 

органічний азот, 

фітогормони 

134 г/л 

Листова 

обробка, 

полив під 

корінь 

ENZIM BIOTECH 

Agro (Україна) 

Амінорост 

Вільні АК, 

органічний азот, 

водорозчинний 

фосфор і калій, 

мікроелементи 

13% 

Листова 

обробка, 

полив під 

корінь 

IMEX AGRO 

(Україна) 

Біохелат 

Аміновіта 

Вільні АК, пептиди, 

мікроелементи 
150 г/л 

Листова 

обробка 

SPC 

BiolabtechnologyLtd 

(Україна) 
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АП сприяють активізації процесів репарації, що мінімізують негативний 

вплив абіотичних стресів на рослини. Вони уповільнюють в'янення під час 

осмотичного стресу, оптимізують водний гомеостаз під час спекотної погоди, що 

запобігає засиханню. Як універсальні осмолітики вони підтримують плинність 

мембран на рівні, достатньому для функціонування фотосинтетичного та 

енергетичного апарату клітини, що дозволяє рослинам виживати за 

екстремальних температур. АП можуть бути застосовані для фоліарної обробки, 

а також для передпосівного праймування та під час фертигації рослин, які 

вирощуються на крапельному зрошенні. 

Біостимулятори на основі амінокислот є поліфункціональними у 

використанні, тобто можуть застосовуватися для всіх видів сільсько-

господарських культур: зернових, бобових, технічних а також листових і 

плодових овочів, ягід, кісточкових фруктових, плодових, цитрусових, оливкових 

дерев, лози, тропічних плодових дерев. Вони екологічно безпечні для 

навколишнього середовища та дозволяють без руйнівних впливів на довкілля 

ефективно захистити сільськогосподарські культури від дії абіотичних стресів. 
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5.3. Фенольні сполуки і флавоноїди злаків за дії абіотичних стресів 

 

Фенольні сполуки – велика група вторинних метаболітів, синтезуються 

переважно в надземних органах рослин: тканинах листків і квіток, пилку, насінні 

та корі. Завдяки антиоксидантній активності ФС відіграють важливу роль у 

захисті рослин від патогенів і адаптації до стресових умов навколишнього 

середовища (Babenko et al., 2019а, b). До складу ФС входять флавоноїди, 

фенольні кислоти, таніни, стільбени та лігнани (Alu’datt et al., 2017). Флавоноїди 

– найбільш поширені та біологічно активні ФС, володіють значним 

антиоксидантним потенціалом, обумовленим особливостями їхньої хімічної 

будови (Grace, 2005; Parvin et al., 2022). Головним сайтом ФС у клітині є вакуоль, 

а в молодих та інтенсивно ростучих рослинних тканинах вони знаходяться 

переважно в хлоропластах і ядрах (Babenko et al., 2019а, b). ФС підтримують 

водний баланс клітин, індукують поглинання й нейтралізацію АФК, стабілізують 

мембрани, запобігають перекисному окисненню ліпідів, денатурації протеїнів і 

пошкодженню ДНК (Ali, Alqurainy, 2006; Kumar et al., 2020). ФС стимулюють 

неферментативні та ферментативні антиоксидантні реакції (Parvin et al., 2019). 

Рівень акумуляції ФС залежить від інтенсивності та типу стресу, також виду 

рослин (Rahman et al., 2016). Посилений синтез ФС належить до маркерних 

неспецифічних реакцій рослин на абіотичні стреси (Parvin et al., 2022). 

Холодовий стрес посилює накопичення в клітинній стінці суберину й лігніну, 

завдяки чому зростає стійкість рослин (Griffith, Yaish, 2004). За дії низької 

температури накопичуються антоціани, які захищають рослини від 

фотоінгібування (Grace, 2005). Збільшення вмісту флавоноїдів у рослинних 

органах за дії низьких температур розглядається як ознака холодостійкості 

(Shomali et al., 2022). За дії високої температури, навпаки, вміст антоціанів 

зменшується (Laoué et al., 2022). За комбінації водного та теплового стресів 

накопичення флавоноїдів відбувається більш інтенсивно, ніж за умови теплового 

стресу (Zandalinas et al., 2017). Посилений синтез ФС забезпечує стійкість до 

водного дефіциту та підвищує продуктивність рослин (Naikoo et al., 2019). За дії 

посухи флавоноїди беруть участь у трансдукції сигналів, регуляції експресії 

генів і активації ензимів, детоксикації АФК, контролюють продихову активність, 

захищають фотосинтетичну систему (Shomali et al., 2022; Kumar et al., 2023a). 

Ми дослідили вплив високої й низької позитивної температури та помірної 

ґрунтової посухи на динаміку загальних фенолів і флавоноїдів у надземній 

частині 14- та 18-добових рослин озимої пшениці Подолянка, спельти 

Франкенкорн і жита Богуславка (Romanenko et al., 2022, 2025; Kosakivska et al., 
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2025; Voytenko et al., 2025). Підготовку рослинного матеріалу для визначення 

вмісту загальних фенолів проводили за методом Stanković (2011), кількісне – за 

методом Bobo-García et al. (2015) з використанням реактиву Фоліна-Чіокальтеу 

(AcrosOrganics, Бельгія). Вимірювання абсорбції розчинів для визначення вмісту 

загальних фенолів здійснювали за довжини хвилі 750 нм. Кількісний вміст 

фенолів розраховували відповідно до калібрувальної кривої галової кислоти 

(C7H6O5; AcrosOrganics, Бельгія) і виражали у мг еквівалентах галової кислоти 

(GAE) на 1 г сухої речовини (мг GAE/г сухої речовини). Екстракцію рослинного 

матеріалу та визначення вмісту флавоноїдів проводили за методом Smirnov et al. 

(2021). Оптичну густину досліджуваного розчину вимірювали за довжини хвилі 

397,6 нм. Для побудови калібрувальної кривої використовували рутин 

(C27H30O16; AcrosOrganics). Кількісний вміст виражали в еквівалентах рутину 

(RE) на 1 г сухої речовини (мг RE/г сухої речовини). Вміст загальних фенолів і 

флавоноїдів визначали на спектрофотометрі Jenway UV-6850 (Великобританія). 

Найвищий вміст загальних фенолів був у надземній частині контрольних 

14-добових рослин спельти, найнижчий – у рослинах жита (рис. 5.10 А). Вміст 

флавоноїдів у контрольних рослинах спельти та озимої пшениці знаходився у 

близьких межах, тоді як у рослинах жита був значно меншим (рис. 5.10 Б). Після 

короткотривалої дії високої температури вміст фенолів у надземній частині 

озимої пшениці та спельти збільшився на 53% і 11% відповідно, тоді як у 

рослинах жита зменшився на 18% (рис. 5.10 А). Вміст флавоноїдів за 

короткотривалої дії високої температури збільшився в усіх трьох досліджуваних 

видах: на 26% у рослинах озимої пшениці та спельти і на 9% у рослинах жита 

(рис. 5.10 Б). 

 

 
Рис. 5.10. Вплив короткотривалих теплового стресу (+40 °С, 2 год) і охолодження (+4 °С, 2 

год) на накопичення фенолів (А, мг GAE/г сухої речовини) та флавоноїдів (Б, RE/г сухої 

речовини) у надземній частині 14-добових рослин пшениці Подолянка, спельти Франкенкорн 

і жита Богуславка 
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Зміни в динаміці накопичення фенолів і флавоноїдів у надземній частині 

досліджених видів злаків після короткотривалої дії низької позитивної 

температури були менш виразними. У рослин пшениці вміст загальних фенолів 

збільшився на 18%, у спельти знаходився в межах контролю, тоді як у жита 

зменшився на 15% (рис. 5.10 А). Кількість флавоноїдів у пшениці була в межах 

контролю, у спельти збільшилась на 14%, тоді як у жита зменшилась на 42% (рис. 

5.10 Б). 

У надземній частині контрольних 18-добових рослин жита та спельти вміст 

загальних фенолів був вищим, ніж у пшениці. У коренях контрольних рослин 

жита вміст фенолів перевищував показники у спельти і пшениці (рис. 5.11 А). 

Найвищий вміст флавоноїдів відзначено в надземній частині та коренях пшениці, 

найнижчий – у надземній частині жита. В коренях жита й пшениці вміст 

флавоноїдів був приблизно однаковим (рис. 5.11 Б).  

За помірної ґрунтової посухи вміст загальних фенолів у надземній частині 

рослин озимої пшениці та спельти збільшився відповідно на 39% і 8%, тоді як у 

жита зменшився на 6%. У коренях пшениці рівень фенолів залишився в межах 

контролю, у спельти зріс на 59%, а у жита зменшився на 22% (рис. 5.11 А). 

Помірна ґрунтова посуха індукувала накопичення флавоноїдів у всіх 

досліджених злаків. Зокрема, у надземній частині пшениці, спельти та жита вміст 

флавоноїдів збільшився відповідно на 70, 17 та 111%, тоді як у коренях на 10, 38 

та 143% (рис. 5.11 Б). 

Відомості про вплив температури на вміст ФС у різних видів рослин досить 

суперечливі. Після теплового стресу (+35 °С) у рослин Lycopersicon esculentum 

та охолодження (+15 °С) у рослин Citrullus lanatus накопичувались феноли 

(Rivero et al., 2001). Листки чутливого до холоду сорту винограду містили меншу 

кількість загальних фенолів, ніж листки стійкого сорту (Król et al., 2015). У 

тканинах саджанців після охолодження (+7 °С і +10 °C) вміст фенольних сполук 

зменшувався, а після відновлення поступово зростав (Amarowicz et al., 2010). 

Водночас показано, що за холодового стресу (+1 °С і +10 °C) посилювався синтез 

фенольних сполук в проростках сої (Swigonska et al., 2014), а за відновлення 

(+24 °C) їхній вміст поступово зменшувався (Posmyk et al., 2005). Результати 

наших досліджень показали, що короткотривалі температурні стреси індукували 

зміни в накопиченні ФС в органах рослин пшениці, спельти й жита. Тепловий 

стрес індукував накопичення загальних фенолів і флавоноїдів у надземній 

частині пшениці та спельти. Холодовий стрес спричиняв зростання вмісту 

загальних фенолів у рослинах пшениці, та рівень флавоноїдів збільшився в 
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рослинах спельти. Температурні стреси негативно вплинули на динаміку 

фенольних сполук у рослинах жита. 

 

 

 
Рис. 5.11. Вплив помірної ґрунтової посухи на вміст загальних фенолів (А, GAE/г сухої 

речовини)та флавоноїдів (Б, RE/г сухої речовини) у надземній частині та коренях 18-добових 

рослин пшениці Подолянка, спельти Франкенкорн і жита Богуславка 

 

За помірної ґрунтової посухи значне накопичення фенолів відбулось у 

надземній частині пшениці Подолянка та коренях спельти Франкенкорн. У 

роботі Gregorová et al. (2015) повідомлялось, що в надземній частині рослин 

озимої пшениці за дії сильної ґрунтової посухи значно зріс вміст фенолів, що, на 

думку авторів, сприяло захисту фотосинтезуючих тканин від окислювального 

стресу та зневоднення. В низці публікацій повідомлялось про накопичення 

загальних фенолів і флавоноїдів у чутливих і толерантних до посухи генотипів 

озимої пшениці (Chakraborty, Pradhan, 2012; Hameed et al., 2013; Ma et al., 2014b). 

Однак гіперсинтез ФС був зафіксований саме у посухостійких генотипів (Guo et 

al., 2020; Upadhyay et al., 2020). 

Флавоноїди здебільшого є видоспецифічними сполуками (Harborne, 

Williams, 2000; Khalid et al., 2019), на біосинтез яких впливає стадія розвитку 

А 

Б 
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рослини, а також характер і тривалість стресового навантаження (Shomali et al., 

2022). Флавоноїди пригнічують активність ензимів, задіяних в утворенні АФК, 

завдяки чому посилюється антиоксидантний захист, зростає продуктивність 

рослин (Shomali et al., 2022), що відкриває можливості для використання цих 

сполук у селекційній роботі при створенні стресостійких генотипів аграрних 

культур (Ma et al., 2014b; Li et al., 2021; Baozhu et al., 2022). Ми показали, що за 

дії помірної ґрунтової посухи у всіх досліджених злаків зріс вміст флавоноїдів. 

Найбільш активне накопичення відбулося в росинах жита. В рослинах озимої 

пшениці флавоноїди накопичувались переважно в надземній частині, у спельти 

– в коренях. 

Загалом, отримані результати засвідчили участь фенолів і флавоноїдів у 

формуванні реакції-відповіді на короткотривалі температурні стреси та помірну 

ґрунтову посуху в досліджених видів злаків. 
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5.4. Ліпоксигеназна активність злаків за дії абіотичних стресів 

 

Одним з найважливіших завдань новітніх аграрних і біотехнологічних 

досліджень є з’ясування молекулярних механізмів стійкості злаків до абіотичних 

стресів і пошук відповідних молекулярних маркерів стресостійкості. У 

дослідженнях механізмів стресостійкості особливу увагу привертають сигнальні 

шляхи, які задіяні у формуванні стійкості до несприятливих чинників. Абіотичні 

стреси індукують різноманітні ліпідозалежні сигнальні реакції, оскільки 

мембранні ліпіди по-різному реагують на зміни навколишнього середовища. 

Останні дослідження засвідчили, що ліпіди виступають сигнальними 

медіаторами, які модулюють стресові реакції в клітинах рослин і активують 

захисні системи (Sharma et al., 2023). Однією з ключових груп ферментів, 

залучених до таких реакцій, є ліпоксигенази (ЛОГ), які каталізують 

діоксигенування поліненасичених жирних кислот (ПНЖК) з подальшим 

утворенням оксиліпинів (Genva et al., 2019). Оксиліпини беруть участь у передачі 

сигналів та експресії генів, які відповідають за стресові реакції (Singh et al., 2022). 

ЛОГ залучені до участі в багатьох процесах – від проростання насіння, регуляції 

росту й розвитку до реакцій на патогени та інші стресові фактори (Porta, Rocha-

Sosa, 2002; Babenko et al., 2017). Ліпоксигенази беруть участь у передачі сигналу 

за дії стресорів, взаємодіють з фітогормонами (рис. 5.12), а показники 

ліпоксигеназної активності можуть слугувати молекулярним маркером 

стресостійкості (Babenko et al., 2017; Rai et al., 2021). ЛОГ є ключовим 

ферментом, який запускає метаболічний шлях утворення жасмонової кислоти 

(ЖК). АБК та оксиліпини взаємодіють на рівні регуляції експресії генів і 

вторинних сигналів. Хоча ЛОГ не бере безпосередньої участі в біосинтезі АБК, 

вона впливає на чутливість клітин до АБК та на експресію генів, регульованих 

цим гормоном, особливо за умов посухи та сольового стресу. ЛОГ регулює 

біосинтез етилену через перехресні сигнальні шляхи. ЖК здатна індукувати 

експресію генів, які беруть участь у синтезі етилену, посилюючи стресові та 

захисні реакції рослин. Травматин, що також утворюється в межах 

оксиліпинового шляху, синтезується через 13-ЛОГ-залежне окиснення 

ліноленової кислоти. Він бере участь у регенерації тканин після ушкоджень і 

може розглядатися як сигнальна молекула, що передує або діє синергічно з ЖК. 

Особливу увагу привертає вивчення злаків. Дослідження пшениці, 

кукурудзи та рису показали, що ЛОГ-гени характеризуються тканинною 

специфічністю, складним механізмом регуляції та функціональною активністю 

(Christensen et al., 2013; Huang et al., 2014; Kong et al., 2015). 
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Екстремальні температури та посуха є одними з найпоширеніших 

природних стресів, які провокують порушення водного режиму, уповільнюють 

ріст і розвиток, впливають на врожайність аграрних культур (Barlow et al., 2015). 

Однак дослідження впливу температури та посухи на активність ЛОГ 

малочисельні, носять фрагментарний і неоднозначний характер. Зокрема 

встановлено, що під впливом високої температури в рослинах пшениці, 

кукурудзи й сорго накопичуються ЛОГ-транскрипти та жасмонати (Hossain, 

Roslan, 2023). Жасмонати, в свою чергу, посилюють утворення білків теплового 

шоку (БТШ), антиоксидантних ферментів (супероксиддисмутази (СОД) та 

каталази. ЛОГ сприяють стабілізації мембранних ліпідів шляхом синтезу 

оксиліпинів, які перешкоджають неконтрольованому перекисному окисненню 

(Genva et al., 2019). 

 

 
Рис. 5.12. Ліпоксигенази в регуляції метаболізму фітогормонів 

 

До формування стратегії захисту від несприятливих чинників у рослин 

залучені різні гени, проте запуск початкових стресових реакцій передбачає 

існування спільних у різних організмів генів і сигнальних шляхів (Karabudaketal., 

2014). За короткотривалої дії високої температури (+42 °С) зафіксовано 

експресію ЛОГ-генів, накопичення малонового диальдегіду (МДА), що свідчить 

про активацію ЛОГ-шляху й роль ензиму в антиоксидантному захисті (Zhang et 

al., 2025). Подібні результати виявлено у рослин рису, де ЛОГ-активність 

корелювала з виживаністю після теплового стресу (Guan et al., 2025). У 

мезокотилях етильованих проростків кукурудзи ідентифіковані 9- і 13-ЛОГ- 

активності. За короткотривалої дії низької температури зростала лише 13-ЛОГ- 

активність. Активація 13-ЛОГ-шляху синтезу оксиліпинів за дії низької 
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температури, вірогідно, причетна до реалізації антистресових програм (Kopich et 

al., 2010). Обробка кріопротектором рослин томатів (Solanum lycopersicum L.) 

експресувала гени біосинтезу ліпоксигеназ, що в подальшому захищало рослини 

від холодового стресу (Karabudak et al., 2014). 

Зміни ЛОГ-активності за короткотривалого впливу високої або низької 

температури залежали від адаптаційної стратегії виду. За контрольних умов 

проростки чутливої до стресу вівсяниці польової (Festuca pratensis) мали 

найнижчий показник ЛОГ-активності та характеризувалися значним її 

зниженням після дії як низьких, так і високих температур. Натомість, активність 

ЛОГ теплостійкого амаранту хвостатого (Amaranthus caudatus) зросла на 76% за 

дії високої температури (Косаківська та ін., 2011). У проростках теплостійкого 

сорту Brassica napus L. за дії низької температури ЛОГ-активність зменшилась 

на 34%, тоді як тепловий стрес не викликав суттєвих змін. Водночас у 

холодостійкого сорту висока температура індукувала зменшення ЛОГ-

активності вдвічі, натомість холодовий стрес суттєвих змін не спричиняв 

(Косаківська та ін., 2012). В умовах посухи збільшувались активність ЛОГ і 

синтез жасмонат індукованих протеїнів в рослинах пшениці (Zhang et al., 2014). 

Ми дослідили вплив високої й низької позитивної температури та помірної 

ґрунтової посухи на активність ЛОГ у надземній частині та коренях 14- та 18-добових 

рослин пшениці Подолянка, спельти Франкенкорн і жита Богуславка (Бабенко, 2018; 

Babenko et al., 2014, 2021; Babenko, 2017; Kosakivska et al., 2025). Виділення 

ліпоксигенази та визначення її активності проводили за методом (Babenko et al., 2017). 

Короткотривалі температурні стреси та посуха по різному впливали на ЛОГ-активність 

у досліджених злаків. Проте, за високої (+40 °C, 2 год) і позитивно низької (+4 °C, 2 год) 

температури, а також помірної ґрунтової посухи (4 доби без поливу) підтримувалась 

ЛОГ-активність, що засвідчило участь продуктів ЛОГ-каскаду в захисних реакціях і 

стабілізації за абіотичних стресів.  

У надземній частині пшениці Подолянка ідентифіковані дві мембранозв’язані 

форми вегетативної 9-ЛОГ: ЛОГ-1 (pHопт 7,5) і ЛОГ-2 (pHопт 5,5), у коренях 9-ЛОГ (pHопт 

6,5). Ліпоксигеназна активність у надземній частині в контрольних умовах була вище, 

ніж у коренях. Після короткотривалого теплового стресу активність ЛОГ-1 і ЛОГ-2 у 

надземній частині зросла відповідно в 1,5 і 1,6 раза, 9-ЛОГ у коренях в 1,8 раза 

(рис. 5.13). Незначне зростання активності ліпоксигеназ спостерігалось після 

короткотривалого охолодження. Більш виразні зміни зафіксовані для ЛОГ-2 з надземної 

частини (рис. 5.13). 
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Рис. 5.13. Вплив короткотривалих теплового стресу (+40 °С, 2 год) та охолодження (+4 °С, 2 

год) на ліпоксигеназну активність 14-добових рослин пшениці Подолянка 

 

У надземній частині 14-добових рослин спельти Франкенкорн 

ідентифіковані три молекулярні мембранозв’язані форми вегетативної 9-ЛОГ: 

ЛОГ-1 (рНопт 5,5), ЛОГ-2 (рНопт 5,8) і ЛОГ-3 (рНопт 6,2) та одна форма 9-ЛОГ 

(рНопт 6,0) у коренях. ЛОГ-активність у надземній частині за контрольних умов 

була вищою, ніж у коренях. Після короткотривалого теплового стресу активність 

ЛОГ-1 і ЛОГ-2 в надземній частині зросла відповідно в 1,5 і 1,6 раза, тоді як 

активність 9-ЛОГ у коренях – у 2,8 раза. Було зафіксовано незначне зростання 

активності ЛОГ-3 у надземній частині рослин спельти (рис. 5.14). Після 

короткотривалого охолодження активність ЛОГ-1 та ЛОГ-2 зростала, тоді як 

ЛОГ-3 та 9-ЛОГ зменшувалася. Найбільше збільшення каталітичної активності 

спостерігалося у ЛОГ-2. Загалом ефекти охолодження були більш виразними. 

Найбільш чутливо реагувала на високу температуру 9-ЛОГ, що знаходиться в 

коренях спельти. Найвищі показники активності як у контролі, так і після 

температурних стресів були виявлені у ЛОГ-2, локалізованій у надземній частині 

(рис. 5.14). В умовах посухи активність ЛОГ-1, ЛОГ-2 і ЛОГ-3 у надземній 

частині 18-добових рослин спельти зросла відповідно на 118, 120 і 190%. 

Найбільше (майже в 4 рази) зростання активності зафіксовано для 9-ЛОГ, 

локалізованій у коренях рослин (рис. 5.14). 
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Рис. 5.14. Вплив короткотривалих теплового стресу (+40 °С, 2 год), охолодження (+4 °С, 2 год) 

та помірної ґрунтової посухи (4 доби без поливу) на ліпоксигеназну активність 14- і 18-

добових рослин спельти Франкенкорн 

 

У надземній частині 14-добових рослин жита Богуславка були 

ідентифіковані три молекулярні мембранозв’язані форми 9-ЛОГ: ЛОГ-1 (рНопт 

6,0) і ЛОГ-2 (рНопт 6,5) та розчинна форма 13-ЛОГ (рНопт 6,8), у коренях – 

мембранозв’язана форма 9-ЛОГ (рНопт 6,2). Після короткотривалого теплового 

стресу активність ЛОГ-1 і ЛОГ-2 у надземній частині жита зросла відповідно в 3 

і 2 рази, активність 9-ЛОГ у коренях зросла вдвічі. Натомість активність 13-ЛОГ 

у надземній частині зменшилась у 1,5 раза. Після короткотривалого охолодження 

активність ЛОГ-1 і ЛОГ-2 у надземній частині зросла майже в 1,5 раза, 

активність 9-ЛОГ у коренях – у 1,2 раза (рис. 5.15). 

За умов посухи у надземній частині 18-добових рослин жита Богуславка 

відмічене зростання активності обох мембранозв’язаних ізоформ 9-ЛОГ в 1,5 й 

2 рази і майже втричі зросла активність 9-ЛОГ у коренях. Разом із тим у 

надземній частині відбулось зниження активності розчинної 13-ЛОГ (рис. 5.15). 

Зростання активності ЛОГ-2 і ЛОГ-3 у надземній частині та 9-ЛОГ у коренях 

після помірної ґрунтової посухи відбувалось на тлі гальмування ростових 

процесів і достатньо високих показників вмісту хлорофілів (Romanenko 

et al., 2022). 

Зміна ЛОГ-активності в онтогенезі та за дії стресорів вказує на існування 

тонких механізмів її регуляції. Показано, що регуляція ЛОГ-активності 

здійснюється на трансляційному і посттрансляційному рівнях (Покотило и др., 

2015). Ізоформиліпоксигенази є розчинними протеїнами, які знаходяться в 

стромі хлоропластів, вакуолях, цитозолі, мітохондріях або ліпідних тілах 

(Покотило и др., 2015; Babenko et al., 2017). На противагу цьому, субстрати ЛОГ 
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погано розчинні у водному середовищі за фізіологічного значення рН. 

Передбачається, що можливим механізмом активації розчинних ЛОГ є їхня 

факультативна Ca2+-залежна асоціація з клітинними мембранами (Youn et al., 

2006). Відомо, що активність ЛОГ регулюється за допомогою фосфорилювання, 

а також вивільненням великої кількості субстрату ЛОГ – ПНЖК (Thivierge et al., 

2010). 

 

 
Рис. 5.15. Вплив короткотривалих теплового стресу (+40 °С, 2 год), охолодження (+4 °С, 2 год) 

та помірної ґрунтової посухи (4 доби без поливу) на ліпоксигеназну активність 14-і 18-добових 

рослин жита Богуславка 

 

Загалом, наші дослідження продемонстрували присутність мембрано-

зв'язаних ізоформ вегетативної ЛОГ в органах двох споріднених видів пшениць 

і жита. Зафіксовані зміни в активності ЛОГ у стресових умовах вказують на 

диференційоване залучення ізоформ ензиму у формування реакції-відповіді на 

негативні впливи.  

Сучасна молекулярна біотехнологія активно використовує генетичні 

підходи для цілеспрямованої зміни експресії ЛОГ-генів для поліпшення 

стресостійкості злаків. Це включає, як традиційні трансгенні методи –

гіперекспресію, сайленсинг (інтерференція РНК) (Macovei et al., 2012; Nouri, 

Komatsu, 2013), так і сучасні технології редагування геному, такі як системи 

кластерних регулярно розташованих коротких паліндромних повторів 

CRISPR/Cas9 (Boubakri, 2023; Kumar et al., 2023b). Ці підходи дозволяють 

створювати стійкі до посухи та високих температур сорти злаків з покращеними 

агрономічними характеристиками. 

Гіперекспресія ЛОГ-генів здатна посилювати захисні реакції рослин, 

включаючи продукування жасмонатів та еліситорів, а також зміцнювати клітинні 
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стінки. Так, у трансгенного рису гіперекспресіяOsLOX2 спричинила посилення 

жаростійкості за рахунок підвищення рівня антиоксидантних ферментів (Huang 

et al., 2014). Пригнічення ZmLOX3 знижувало чутливість кукурудзи до 

Fusariumspp. та порушувало нормальний розвиток коренів (Gao et al., 2008). 

Трансгенні рослини з модифікованою ЛОГ-експресією характеризувались 

посухостійкістю. Зокрема, у рослин сорго з підвищеною експресією SbLOX 

уповільнювалось в'янення в умовах водного дефіциту за рахунок зниження 

транспірації та накопичення АБК (Wang et al., 2024). Сайленсинг генів TaLOX1 

покращував водоутримання та знижував накопичення МДА у рослинах рису, що 

вказує на зниження перекисного окиснення ліпідів (Yang et al., 2020). 

Технологія використання CRISPR-Cas9 надає інструменти для створення 

точкових мутацій у ЛОГ-локусах, мінімізуючи побічні ефекти у рослин. Так, 

CRISPR-модуляція гену OsLOX1 дозволила знизити рівень окиснення ліпідів та 

збільшити тривалість зберігання зерна рису без негативного впливу на 

проростання (Mou et al., 2024), а точкові мутації ZmLOX2 спричинили зниження 

чутливості до високої температури рослин кукурудзи, що супроводжувалось 

експресією генів білків теплового шоку (БТШ) (Li et al., 2025). 

Використання генної інженерії для модифікації ЛОГ-функції у 

сільськогосподарських культурах пов'язане з низкою етико-правових викликів. 

У країнах ЄС геномно-редаговані рослини прирівнюються до ГМО, тоді як у 

США та Японії CRISPR-редаговані сорти, що не містять трансгенних вставок, не 

підпадають під такі обмеження (Schmidt et al., 2020). 

На тлі стійких кліматичних змін землеробство вимагає залучення новітніх 

підходів до збереження продуктивності культур. Розуміння ЛОГ-сигнальних 

шляхів дозволяє ідентифікувати молекулярні мішені, що залучені до ранніх 

стресових реакцій, та використовувати їх для створення стресостійких сортів. Це 

особливо актуально для стратегічних культур – пшениці, кукурудзи, жита, 

ячменю, рису та сорго. На основі ЛОГ-метаболітів (оксидаз жирних кислот, 

жасмонатів, α-кетолінів) можливе створення нових біостимуляторів, що 

активують ендогенні захисні шляхи. Такі препарати можуть застосовуватися як 

засіб підготовки рослин до стресів. 
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5.5. Ультраструктурна будова клітин мезофілу та мікроморфологія 

поверхні листків злаків за дії абіотичних стресів 

 

Температура є одним із ключових екологічних факторів, що визначає 

характер росту і розвитку рослин та впливає на їхню продуктивність. Вплив 

температурного стресу проявляється на субклітинному, клітинному та 

анатомічному рівнях (Kratsch, Wise, 2000; Saropulos, Drennan, 2007). Кутикула 

разом із епідермою є бар'єром, що відокремлює рослинні тканини від 

зовнішнього середовища. Вони відіграють важливу роль у захисті внутрішньої 

структури листка й чинять опір впливу факторів навколишнього середовища. 

Кутикулярні воски вкривають поверхню листків, створюючи гідрофобний бар'єр, 

і функціонують як перша лінія захисту, зменшуючи втрату «непродихової» 

вологи. Температурні стреси викликають зміни у морфології, хімічному складі 

та, відповідно, ступені гідрофобності кутикулярного воску (Shepherd, Griffiths, 

2006). Продихи, в свою чергу, регулюють надходження CO2 в рослини та 

інтенсивність випаровування води (Wagner et al., 2003; Lawson, Vialet-Chabrand, 

2019). За дії низької температури зменшується продихова провідність і, 

відповідно, знижується відносна швидкість транспірації (Liu et al., 2015). 

Зміни ультраструктури клітин листків залежать від інтенсивності та 

тривалості дії високої чи низької температури та загальної стресостійкості 

рослин (Kang et al., 2007; Salem-Fnayou et al., 2011). Найчутливими до 

температурних флуктуацій виявились хлоропласти. Показано, що в листках 

пшениці та винограду висока температура викликала зміни в морфології цих 

органел, розмірах тилакоїдів, структурі гранальних комплексів, індукувала 

накопичення пластоглобул (Kang et al., 2007; Salem-Fnayou et al., 2011). 

Відзначалось зменшення кількості крохмалю в хлоропластах різних видів рослин 

(Климчук та ін., 2012; Salem-Fnayou et al., 2011). Повідомлялось про появу 

електронно-щільних глобул, асоційованих з мембранами ендоплазматичного 

ретикулуму та цитоплазматичною мембраною, а також про збільшення числа 

ліпідних крапель у цитоплазмі клітин листків суріпиці озимої й щириці хвостатої 

(Климчук та ін., 2012). За низької температури у хлоропластах різних видів 

рослин збільшувався розмір крохмальних зерен (Климчук та ін., 2011; Kratsch, 

Wise, 2000). Відзначались також порушення цілісності мембран хлоропластів у 

чутливих до холодового стресу рослин томатів, квасолі та кукурудзи (Holaday et 

al., 1992; Brüggemann et al., 1994; Pinhero et al., 1999). Водночас у холодостійких 

рослин гороху, ріпаку, пшениці та шпинату (Wise et al., 1983; Holaday et al., 1992; 

Hurry et al., 1995) спостерігалося набухання пластид без порушення цілісності 
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мембран. Серед реакцій інших органел на низьку температуру відзначено 

набухання мітохондрій без порушення цілісності мембран оболонки з редукцією 

системи крист у рослинах озимого ріпаку (Stefanowska et al., 2002) та 

арабідопсису (Ristic, Ashworth, 1993). 

Серед абіотичних стресів, посуха найбільш негативно впливає на ріст і 

врожайність сільськогосподарських культур (Ahmad et al., 2018). Її наслідки 

стають все більш масштабними, оскільки аридизація поглинає дедалі більше 

орних земель у світі. Підвищення посухостійкості аграрних культур є найбільш 

економічно вигідним підходом до зростання продуктивності та зниження 

залежності сільського господарства від ресурсів прісної води. Рослини можуть 

уникати посухи шляхом скорочення життєвого циклу або формувати внутрішні 

механізми стійкості. Остання стратегія досягається за рахунок запобігання 

зневодненню або формування стійкості до зневоднення (Yue et al., 2006; 

Yoshimura et al., 2008; Wang et al., 2012). Аналіз цих захисних стратегій сприяє 

розумінню механізмів толерантності та опору рослин до посухи. 

Ми проаналізували вплив високої (+40 °С, 2 год) температури, 

охолодження (+4 °С, 2 год) і помірної ґрунтової посухи на ультраструктуру клітин 

мезофілу та мікроморфологію поверхні листків пшениці Подолянка, спельти 

Франкенкорн і жита Богуславка. Для дослідження ультраструктури клітин у 

трансмісійному електронному мікроскопі брали висічки розміром 1 × 2 мм із 

середньої частини другого листка. Зразки фіксували 2,5%-м глутаральдегідом у 

0,1 М какодилатному буфері (pH 7,2). Спочатку фіксували у вакуумній камері для 

кращої інфільтрації матеріалу за кімнатної температури (1 год), а потім за 

температури +4 °С (4 год). Зразки промивали буферним розчином і контрастували 

1%-м тетроксидом осмію в 0,1 М какодилатному буфері (pH 7,2) за температури 

+4 °C (12 год). Для дегідратації використовували розчини етилового спирту 

зростаючої концентрації, а після обробки безводним ацетоном зразки поміщали 

в суміш епоксидних смол – епону та аралдиту. Зрізи отримували в 

ультрамікротомі LKB-8800 (Швеція) і вивчали в електронному мікроскопі JEM-

1230 (JEOL, Японія) за прискорювальної напруги 80 кВ. Морфометричний аналіз 

клітин і органел здійснювали за допомогою комп’ютерної програми UTHSCSA 

ImageTool 3 (США), використовуючи масштабну лінійку отриманих електронно-

мікроскопічних зображень. У кожному варіанті було проаналізовано 

щонайменше 100 мікрофотографій. 

Мікроструктуру поверхні листків вивчали у сканувальному електронному 

мікроскопі JOEL JSM-6060LA (JEOL, Японія). Для дослідження вирізали 

фрагменти із середньої частини листка, зневоднювали їх у серії розчинів етанолу 
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зростаючої концентрації (30, 50, 70, 80, 96 та 100%), суміші етанолу та ацетону 

(спочатку 2 : 1, а потім 1 : 1) й абсолютному ацетоні з метою запобігання 

деформації клітин і порушення мікрорельєфу поверхні. Остаточно матеріал 

висушували методом критичної точки в приладі Hitachi HSP-2 (Японія). 

Підготовлені таким чином зразки закріпляли двосторонньою клейкою стрічкою 

на латунних столиках і покривали золотом в іонному напилювачі JEOL JFC-1100. 

Результати вимірювань представлені як середнє значення ± стандартна 

похибка середнього (SEM) з трьох незалежних експериментів. Експериментальні 

дані були проаналізовані за допомогою двофакторного дисперсійного аналізу. 

Рівень значущості був встановлений на P < 0,05. Для аналізу використовувалася 

програма Statistix версії 10.0 (Analytical Software, Tallahassee, FL, США). 

Клітини мезофілу листків 14-добових рослин пшениці Подолянка мали 

типову ортодоксальну структуру, овальну форму, внутрішня будова була 

представлена шаром цитоплазми з зануреними в неї органелами і центральною 

вакуолею. Хлоропласти розташовувались уздовж плазмалеми. На діаметральних 

зрізах клітин мезофілу контрольних і дослідних рослин в середньому виявлено 

7–9 хлоропластів (табл. 5.5, рис. 5.16, 1). 

 

Таблиця 5.5. Вплив короткотривалих теплового стресу та охолодження на 

ультраструктурні показники клітин мезофілу листків 14-добових рослин 

пшениці Подолянка 

 

Показник Контроль Тепловий стрес Охолодження 

Площа перерізу клітини, мкм2 224,56±1,68 211.99 ±1.56* 246,33±1,53* 

Кількість хлоропластів на перерізі 

клітини, од. 
8,38±0,09 7,60± 0.07* 7,32 ±0.06* 

Площа хлоропласту, мкм2 5.98±0,01 6,17±0,02* 7,66±0,02* 

Кількість крохмальних зерен на 

переріз хлоропласта, од. 
2,48±0,07 0,93±0,05* 0,56±0,06* 

Площа крохмальних зерен у 

стромі хлоропласту, мкм2 
0,45±0,09 0,24±0,03* 0,30±0,04* 

Кількість пластоглобул на переріз 

хлоропласта, од. 
6,53±0,07 8,22±0,08* 12,06±0,02* 

Кількість мітохондрій на перерізі 

клітини, од. 
6,27±0,04 5,30±0,02* 4,54±0,02* 

Площа мітохондрій, мкм2 0,33±0,02 0,55±0,04* 0,66±0,03* 

Кількість ліпідних крапель на 

перерізі клітини, од. 
0,91±0,01 2,37±0,03* 1,83±0,02* 

Примітка: * – достовірні відмінності між показниками контрольної та експериментальної груп; 

P ≤ 0,01, n = 100, середні значення ± SE. 
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У контрольному варіанті хлоропласти мали овальну форму. Їхні грани 

складалися зі щільно упакованих тилакоїдів, від термінальних ділянок яких 

відходять тилакоїди строми. За чисельністю переважали грани з 10–20 

тилакоїдами (рис. 5.16). У хлоропластах трапляються пластоглобули, 

розташовані поблизу тилакоїдів строми, і багато крохмальних зерен розміром 

0,45 ± 0,09 (табл. 5.5, рис. 5.16, 2). У цитоплазмі присутні ліпідні краплі 

(табл. 5.5). За охолодження відбулось незначне зростання розмірів клітин 

мезофілу (табл. 5.5). Хлоропласти набували більш витягнутої форми, їхні розміри 

збільшились (табл. 5.5, рис. 5.16, 3, 9, 10), що, вірогідно, обумовлювлено 

зростанням обводнення тканин внаслідок зменшення транспірації. В окремих 

випадках спостерігали хлоропласти неправильної форми з виступами або 

інвагінаціями в межах органели, що призводило до збільшення площі поверхні 

та обміну метаболітами між цитоплазмою та хлоропластами або іншими 

органелами. Однак порушення цілісності мембран відмічені не були. Таким 

чином, тилакоїдна система хлоропластів зазнала істотних змін за дії низької 

позитивної температури. 

Спостерігались порушення міжгранальних з'єднань, руйнування ламел 

строми та їхня диспозиція. Відбулася часткова деструкція тилакоїдних мембран 

гран, що виявлялась у хвилеподібній упаковці тилакоїдів і розширенні 

люменальних проміжків (рис. 5.16, 11). 

За охолодження в хлоропластах зменшилися кількість і розмір 

крохмальних зерен (рис. 5.16, 11), а в стромі з'явилися численні пластоглобули 

(табл. 5.5, рис. 5.16, 10). За короткотривалого теплового стресу хлоропласти 

округлювались, грани нерівномірно розподілялись у стромі (рис. 5.16, 5). 

Відбувалась деструкція ламел строми, спостерігалось незначне потовщення 

тилакоїдів гран і збільшення ширини люменального простору (рис. 5.16, 6, 7). 

Кількість та об’єм крохмальних зерен зменшились (табл. 5.5). У цитоплазмі 

порівняно з контролем та умовами охолодження збільшилась кількість ліпідних 

крапель (табл. 5.5). Їхнє формування в клітинах мезофілу листків пшениці 

Подолянка у відповідь на тепловий стрес відбувалося на тлі підвищеної 

активності двох асоційованих із мембраною ізоформліпоксигенази ЛОГ-1 

(рНопт 7,5) і ЛОГ-2 (рНопт 5,5) – ключового ензиму метаболізму поліненасичених 

жирних кислот (ПНЖК) (Babenko et al., 2017). 



149 

 

 
Рис. 5.16. Особливості ультраструктурної організації клітин мезофілу листків 14-добових 

рослин пшениці Подолянка. Зрізи отримані з середньої частини другого листка: 1–4 – 

контроль; 5–8 – тепловий стрес (+40 °С, 2 год); 9–12 – охолодження (+4 °С, 2 год). Позначення: 

Хл – хлоропласт, М – мітохондрія, КЗ – крохмальне зерно, ТГ – тилакоїди гран, ТС – тилакоїди 

строми, ПГ – пластоглобула 

 

Повідомлялось, що висока температура та посуха спричинили 

накопичення ліпідних крапель і зменшення кількості крохмалю в хлоропластах 

пшениці (Vassileva et al., 2011). Мітохондрії в клітинах мезофілу контрольних 

рослин мали овальну форму, характеризувалися електронно-щільним матриксом 

і численними розвиненими кристами пластинчастого типу (рис. 5.16, 4). За 

температурних стресів кількість мітохондрій зростала, помітно «розбухали», 

мембрани крист, які ставали менш контрастними (табл. 5.5). 
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Клітини мезофілу листків 18-добових рослин пшениці Подолянка мали 

типову ортодоксальну структуру, овальну форму, внутрішня будова являла 

собою шар цитоплазми з зануреними в неї органелами і центральною вакуолею. 

Хлоропласти розташовані вздовж плазмалеми. На діаметральних зрізах клітин 

мезофілу контрольних і дослідних рослин в середньому виявлено 6–9 

хлоропластів (табл. 5.6, рис. 5.17, 1). В контрольному варіанті хлоропласти мали 

овальну форму, їхні грани складалися зі щільно упакованих тилакоїдів, від 

термінальних ділянок яких відходять тилакоїди строми. За чисельністю 

переважали грани з 10–20 тилакоїдами (рис. 5.17, 2, 3). У хлоропластах 

трапляються пластоглобули, розташовані поблизу тилакоїдів строми та багато 

крохмальних зерен розміром 0,66 ± 0,04 (табл. 5.6, рис. 5.17, 2). У цитоплазмі 

присутня незначна кількість ліпідних крапель (табл. 5.6). 

 

Таблиця 5.6. Вплив помірної ґрунтової посухи на ультраструктурні показники 

клітин мезофілу листків рослин пшениці Подолянка та спельти Франкенкорн 

 

Показник 
Пшениця Спельта 

Контроль Посуха Контроль Посуха 

Площа перерізу 

клітини, мкм2 
220,8±7,22 198,26±4,75 355,9±8,41* 276,62±6,11 

Кількість 

хлоропластів, од. 
6,3±0,42 5,8±0,38 10,5±0,71 9,3±0,67 

Площа перерізу 

хлоропласту, 

мкм2 

5,4±0,38 6,37±0,31 11,9±0,92 7,8±0,59 

Кількість 

крохмальних 

зерен, од. 

2,0±0,14 0,38±0,03 1,7±0,09 1,5±0,06* 

Площа перерізу 

крохмальних 

зерен, мкм2 

0,66±0,04 0,54±0,03 0,72±0,05 0,35±0,04 

Кількість 

пластоглобул, од. 
9±0,64 11,6±0,82* 17±1,24 22,2±1,37 

Кількість 

мітохондрій 
8.0±0,51 9,5±0,75* 9,4±0,76 8,1±0,59 

Площа перерізу 

мітохондрій, мкм2 
0,31±0,03 0,32±0,03 0,34±0,04 0,45±0,19 

Примітка: * – достовірні відмінності між показниками контрольної та експериментальної груп; 

P ≤ 0,01, n = 100, середні значення ± SE. 

 



151 

 

За умов ґрунтової посухи об’єм клітин мезофілу зменшився, вакуолі були 

майже непомітні, а решту об'єму займали хлоропласти, що зберегли матрикс і 

тилакоїдну систему. Плазмолема залишалась інтактною. В умовах посухи значні 

структурні зміни відбулися в ядрі клітин. Гетерохроматин займав майже весь 

об’єм ядра, лише невеликі ділянки були зайняті нуклеоплазмою (рис. 5.17, 5). 

Хлоропласти в клітинах рослин пшениці, які зазнали впливу ґрунтової посухи, 

мали витягнуту форму, їхні розміри зменшувались (табл. 5.6, рис. 5.17, 6, 7, 8), 

що, вірогідно, обумовлено зменшенням обводнення тканин внаслідок зростання 

транспірації. Однак порушення цілісності мембран не спостерігалися. 

Тилакоїдна система хлоропластів не зазнавала істотних змін за дії посухи. 

Простежувались незначні порушення міжгранальних з'єднань і руйнування 

ламел строми. 

 

 

Рис. 5.17. Особливості 

ультраструктурної організації 

клітин мезофілу листків 18-

добових рослин пшениці 

Подолянка за умови помірної 

ґрунтової посухи: 

1-4 – контроль; 5-8 – ґрунтова 

посуха. Позначення: 

Хл – хлоропласт, 

М – мітохондрія, 

КЗ – крохмальне зерно, 

ТГ – тилакоїди гран, 

ТС – тилакоїди строми 
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Відбулась часткова деструкція тилакоїдних мембран гран, а саме: 

хвилеподібна упаковка тилакоїдів і розширення люменальних проміжків (рис. 

5.17, 6). У хлоропластах за умов ґрунтової посухи зменшились кількість і розмір 

крохмальних зерен (рис. 5.17, 6, 7), у стромі з’явились численні пластоглобули 

(табл. 5.6). Збільшення числа пластоглобул у хлоропластах належить до 

неспецифічних реакцій і відбувається за різних стресів (Salem-Fnayou et al., 

2011). Мітохондрії в клітинах мезофілу контрольних рослин пшениці були 

овальної форми, характеризувалися електронно-щільним матриксом і 

численними розвиненими кристами пластинчастого типу (рис. 5.17, 4). За умов 

помірної посухи мітохондрії помітно «розбухали», мембрани крист ставали 

менш електронно-щільними, що свідчить про зміни їхнього ліпідного складу. 

Клітини мезофілу листка 14-добових рослин спельта Франкенкорн мали 

овальну форму. Внутрішня будова клітин являє собою шар цитоплазми з 

зануреними в неї органелами і центральною вакуолею. Хлоропласти були 

розташовані вздовж плазмалеми. На діаметральних зрізах клітин мезофілу 

контрольних і дослідних рослин в середньому виявлено 10–11 хлоропластів 

(табл. 5.7). В контрольному варіанті хлоропласти мали овальну форму. Їхні грани 

складалися з щільно упакованих тилакоїдів, від термінальних ділянок яких 

відходили тилакоїди строми. Переважали за чисельністю грани, які містять до 

11–15 тилакоїдів (рис. 5.18, 1, 2). У хлоропластах трапляються пластоглобули, 

розташовані поблизу тилакоїдів строми, і незначна кількість крохмальних зерен 

розміром 0,15 ± 0,02 мкм (табл. 5.7). У цитоплазмі присутні ліпідні краплі 

(табл. 5.7). В ядрі контрольних рослин відмічено електронно-щільні ділянки 

конденсованого хроматину (рис. 5.18, 3). У хлоропластах за короткотривалого 

охолодження збільшувались кількість та розмір крохмальних зерен (табл. 5.7, 

рис. 5.18 4, 5). Відомо, що вплив абіотичних стресів, таких як холод і посуха 

викликають накопичення цукрів у рослин (Yamada, Osakabe, 2018). Виявлені 

зміни можуть бути пов'язані з порушеннями в системі відтоку асимілятів 

(сахарози) за умов низької температури. Короткочасна дія низької позитивної 

температури призвела до появи в стромі хлоропластів численних пластоглобул 

(табл. 5.7, рис. 5.18, 5). Їхня кількість значно перевищувала чисельність, 

зазначену після дії високої температури, і в контролі. Протеомні та 

ультраструктурні дослідження пластоглобул свідчать про їхню роль у 

стабілізації тилакоїдних мембран при окислювальних пошкодженнях за дії 

стресорів. Вони є місцем зберігання ліпідоподібних речовин (таких, як 

каротиноїди, токоферол, пластохинон) і специфічних для пластоглобул білків з 

ензимними та структурними функціями (Austin et al., 2006; Vidi et al., 2006). 



153 

 

Таблиця 5.7. Вплив короткотривалих теплового стресу та охолодження на 

ультраструктурні показники клітин мезофілу листків 14-добових рослин спельти 

Франкенкорн 

 

Показник Контроль Тепловий стрес Охолодження 

Площа перерізу клітини, 

мкм2 
220,35±16,09 211,99±16,32 264,22±7,85* 

Кількість хлоропластів на 

перерізі клітини, од. 
12,93±0,78 12,80±0,74 12,87±0,62 

Площа хлоропласту, мкм2 5,45±0,35 5,39±0,33 6,54±0,32* 

Кількість крохмальних 

зерен на переріз 

хлоропласта, од. 

0,73±0,04 0,71±0,06 0,62±0,04* 

Площа крохмальних зерен 

у стромі хлоропласту, мкм2 
6,13±0,29 6,20±0,47 6,33±0,41 

Кількість пластоглобул на 

переріз хлоропласта, од. 
0,15±0,01 0,16±0,03 0,18±0,01* 

Кількість мітохондрій на 

перерізі клітини, од. 
0,40±0,13 4,47±0,31* 2,07±0,43* 

Площа мітохондрій, мкм2 220,35±16,09 211,99±16,32 264,22±7,85* 

Кількість ліпідних крапель 

на перерізі клітини, од. 
12,93±0,78 12,80±0,74 12,87±0,62 

Примітка: * – достовірні відмінності між показниками контрольної та експериментальної груп 

для; ** – P ≤ 0,01, n = 100; *** – P ≤ 0,001, n = 100, середні значення ± SE. 

 

При тепловому стресі хлоропласти набували лінзовидної форми, їхні грани 

нерівномірно розподілялись у стромі. Така форма хлоропластів, вірогідно, 

обумовлена загальним зменшенням обводнення тканин внаслідок зменшення 

рівня транспірації. Висока температура викликала часткову деструкцію 

тилакоїдних мембран, а саме хвилеподібну упаковку тилакоїдів гран і значне 

розширення люмінальних проміжків (табл. 5.7, рис. 5.18, 7, 8). 
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Рис. 5.18. Особливості ультраструктурної організації клітин мезофілу листків спельти 

Франкенкорн. 1–3 – контроль; 4–6 – охолодження (+4 °С, 2 год); 7–9 – тепловий стрес (+40 °С, 

2 год). Позначення: Хл – хлоропласт, Я – ядро, М – мітохондрія, ЛК – ліпідна крапля, КЗ – 

крохмальне зерно, ТГ – тилакоїди гран, ТС – тилакоїди строми, Г – грана, Пг – пластоглобула 

 

Кількість і об’єм крохмальних зерен за умов гіпертермії дещо зменшувався 

(табл. 5.7). У цитоплазмі порівняно з контролем та умовами охолодження 

збільшилась кількість ліпідних крапель. Формування численних ліпідних 

крапель в клітинах мезофілу листків спельти Франкенкорн у відповідь на 
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тепловий стрес відбувалось на тлі підвищеної активності двох 

мембранозв’язанихізоформліпоксигенази – ключового ферменту метаболізму 

поліненасичених жирних кислот (Бабенко, 2018). За температурних стресів у 

клітинах мезофілу листків спельти простежувалось посилення конденсації 

хроматину в ядрі (рис. 5.18, 6, 9) (Babenko et al., 2019a, b). 

Мітохондрії в клітинах мезофілу контрольних рослин спельти були 

округлої форми, характеризувалися електронно-щільним матриксом і 

численними розвиненими кристами пластинчастого типу (рис. 5.19, 1). За дії 

високої температури мітохондрії помітно «розбухали», мембрани крист ставали 

менш контрастними (Бабенко та ін., 2018). Спостерігалося часткове 

просвітлення матриксу органел (рис. 5.19, 2), кількість яких зростала (табл. 5.7). 

Після охолодження частина мітохондрій (40%) зберігала округлу форму (рис. 

5.19, 3) і розміри, близькі до контрольних, однак окремі органели набували 

«чашоподібної» (рис. 5.19, 4) та лінзовидної форми (рис. 5.19, 5), зустрічалися 

також мітохондрії «гантелеподібної» форми (рис. 5.19, 6) (Babenko et al., 2019a, 

b). 

Форма мітохондрій належить до динамічних структурних показників 

органел. У теплолюбних рослин за умов холодового стресу зміна форми 

мітохондрій супроводжується зменшенням кількості крист, що розглядається як 

ознака їхнього пошкодження. У холодостійких рослин зміна форми мітохондрій 

на гантелеподібну та чашоподібну має зворотний характер, що є адаптивною 

реакцією (Vella et al., 2012). За умови охолодження відбулось незначне зростання 

розмірів клітин мезофілу листка 14-добових рослин спельти (табл. 5.7). 

Хлоропласти набули більш округлої форми (рис. 5.18, 4). Відбулось незначне 

потовщення тилакоїдів гран і збільшення ширини люмінального простору (табл. 

5.8). Тилакоїди гран були добре розвинені та щільно прилягали один до одного. 

Спостерігалося рівномірне розташування гран в стромі хлоропластів (рис. 

5.18, 5). 
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Рис. 5.19. Особливості ультраструктури мітохондрій спельти Франкенкорн. 1 – контроль; 2 – 

тепловий стрес (+40 °С, 2 год); 3–6 – охолодження (+4 °С, 2 год) 
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Таблиця 5.8. Вплив короткотривалих теплового стресу та охолодження на 

розміри тилакоїдів у гранах хлоропластів клітин мезофілу листків 14-добових 

рослин спельти Франкенкорн 

 

Примітка: *** – достовірні відмінності між контрольною та експериментальною групою для Р 

≤ 0,001, n = 100, середні значення ± SE. 

 

Хлоропласти в клітинах 18-добових рослин спельти Франкенкорн за 

помірної ґрунтової посухи мали витягнуту форму, їхні розміри зменшувалися 

(табл. 5.6, рис. 5.20, 6, 7, 8), що обумовлено зменшенням обводнення тканин 

внаслідок зростання рівня транспірації. Однак порушення цілісності мембран не 

спостерігалися. Тилакоїдна система хлоропластів не зазнала істотних 

структурних змін. Простежувались незначні порушення міжгранальних з'єднань, 

руйнування ламел строми. Відбулась часткова деструкція мембран тилакоїдів 

гран. Спостерігалась хвилеподібна упаковка тилакоїдів і розширення 

люменальних проміжків (рис. 5.20, 6). У хлоропластах зменшились кількість і 

розмір крохмальних зерен (рис. 5.20, 6, 7), у стромі з’явились численні 

пластоглобули (табл. 5.6). Ці структурні зміни свідчать про значне порушення 

метаболічних процесів у рослин спельти Франкенкорн. Водний дефіцит 

регулював активність мембранозв'язаних форм ЛОГ, які диференційовано 

залучені до адаптації за умов посухи. Спельта як вид, що може зростати в 

гірській місцевості, характеризується високою морозо- та вологостійкістю, проте 

низькою посухостійкістю. У клітинах мезофілу листків посухостійкої пшениці 

Подолянка подібні зміни були подібні до змін, зафіксованих у спельти, і 

включали ущільнення ядра, розрихлення та деформацію тилакоїдів строми та 

гран, зникнення крохмальних зерен, збільшення кількості ліпідних крапель в 

цитоплазмі, однак ці зміни були менш вираженими. 

Варіанти досліду 
Товщина гран тилакоїдів, 

мкм 

Ширина люмінального 

простору, мкм 

Контроль 8,88±0,04 7,59±0,02 

Тепловий стрес  14,47±0,05*** 11,47±0,04*** 

Охолодження  9,99±0,05*** 8,36±0,03*** 
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Рис. 5.20. Особливості ультраструктурної організації клітин мезофілу листків спельти 

Франкенкорн за умов ґрунтової посухи: 1–4 – контроль; 5–8 – ґрунтова посуха. Позначення: 

Хл – хлоропласт, М – мітохондрія, КЗ – крохмальне зерно, ТГ – тилакоїди гран, ТС – тилакоїди 

строми, ПГ – пластоглобула 
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Мітохондрії в клітинах мезофілу контрольних рослин спельти 

Франкенкорн були овальної форми, характеризувались електронно-щільним 

матриксом і розвиненими кристами пластинчастого типу (рис. 5.20, 4). За умов 

помірної посухи мітохондрії помітно «розбухали», мембрани крист ставали 

менш контрастними. Утворення різних форм мітохондрій може вказувати на 

їхній енергетичний статус, а зміна їхньої морфології розглядається як один з 

ранніх індикаторів впливу процесу ПОЛ на клітину (Yoshinaga et al., 2005). З 

використанням ПОЛ-індукуючих агентів показано, що морфологічні зміни 

мітохондрій відбуваються на тлі роз'єднання окислювального фосфорилювання 

в дихальному ланцюгу, що є стресовою реакцією. Однак, чи визначаються 

конформаційні зміни мітохондрій їхнім енергетичним станом або ж на 

енергетичний стан впливають конформаційні зміни, залишається нез'ясованим 

(Yoshinaga et al., 2005). Показано, що за посухи у рослинах сої зменшувалась 

площа поверхні листків, відбувався набряк хлоропластів, пошкоджувались їхні 

зовнішня та внутрішня мембрани, накопичувались пластоглобули, зменшувався 

вміст хлорофілу (Carrera et al., 2021). Посуха гальмувала ріст, індукувала 

зменшення вмісту хлорофілу, швидкості фотосинтезу та транспірації, 

продихової провідності й вмісту СО2 у ячменю (Gill et al., 2017). 

Вивчення зрізів у трансмісійному електронному мікроскопі показало, що 

клітини мезофілу листків 14-добових рослин жита Богуславка мали типову 

ортодоксальну ультраструктуру, овальну форму. Внутрішня будова була 

представлена шаром цитоплазми з зануреними у неї органелами і центральною 

вакуолею. Хлоропласти були розташовані в шарі цитоплазми вздовж плазмалеми. 

На діаметральних зрізах клітин мезофілу контрольних і стресованих рослин у 

середньому виявлено 7–11 хлоропластів (табл. 5.9, рис. 5.21). 

Хлоропласти контрольного варіанту були овальної форми (рис. 5.21, 1, 2). 

Їхні грани складались із щільнихтилакоїдів, від термінальних ділянок яких 

відходили тилакоїди строми. За чисельністю переважали грани, сформовані 10–

20 тилакоїдами (рис. 5.21, 3). У хлоропластах траплялись розташовані поблизу 

окремих тилакоїдів строми пластоглобули і крохмальні зерна розміром 

0,53 ± 0,03 мкм2 (табл. 5.9, рис. 5.21, 2). Хлоропласти у клітинах мезофілу листків 

жита після теплового стресу збільшились у розмірі, мали округлу форму на 

відміну від овальної, яка характерна для органел контрольного варіанту 

(рис. 5.21, 5, 6). Грани нерівномірно розподілялись у стромі. Відбулась 

деструкція ламел строми, спостерігалось потовщення тилакоїдів гран і 

збільшення ширини люменального простору (рис. 5.21, 7). Зросла кількість 

пластоглобул у стромі хлоропластів й кількість ліпідних крапель у цитоплазмі. 
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Таблиця 5.9. Вплив короткотривалих теплового стресу та охолодження на 

ультраструктурні показники клітин мезофілу листків 14-добових рослин жита 

Богуславка 

 

Показник Контроль 
Тепловий 

стрес 
Охолодження 

Площа перерізу клітини, 

мкм2 
373,02±4,36 420,50±5,65* 399,33±10,39* 

Кількість хлоропластів на 

перерізі клітини, од. 
11,40±0,26 9,40±0,14* 8,43±0,24* 

Площа хлоропластів, мкм2 12,58±0,22 19,17±0,41* 14,95±0,37* 

Кількість крохмальних зерен 

у стромі хлоропласту, од.  
1,08±0,16 0,87±0,09* 0,66±0,07* 

Площа крохмальних зерен у 

стромі хлоропласту, мкм2 
0,53±0,03 0,45±0,11* 0,12±0,01* 

Кількість пластоглобул на 

переріз хлоропласта, од. 
9,45±,23 11,07±0,37* 10,87±0,32* 

Кількість мітохондрій на 

перерізі клітини, од. 
6,26±0,20 7,50±0,11* 7,33±0,25* 

Площа мітохондрій, мкм2 0,30±0,03 0,40±0,22* 0,55±0,02* 

Кількість ліпідних крапель 

на перерізі клітини, од. 
0,25±0,04 2,40±0,16* 1,05±0,08* 

Примітка: * – достовірні відмінності між контрольною та експериментальною групою для Р ≤ 

0,001, n=100, середні значення ± SE. 

 

Подібні ефекти впливу високої температури ми спостерігали раніше в 

клітинах мезофілу листків суріпиці озимої, щириці хвостатої та озимої пшениці 

сорту Володарка (Kosakivska et al., 2008; Климчук та ін., 2011, 2012; Babenko et 

al., 2014). 

Після дії низької позитивної температури розмір клітин мезофілу та 

хлоропластів збільшився (табл. 5.9, рис. 5.21, 9, 10), що обумовлено зростанням 

обводнення тканин внаслідок зменшення транспірації. Спостерігалась поява 

хлоропластів неправильної форми з виступами та інвагінаціями (стромулами) в 

межах органели. Наявність таких інвагінацій призводить до збільшення площі 

поверхні пластид, об’єму строми та прискорює обмін метаболітами між 

цитоплазмою і хлоропластами та іншими органелами (Bilyavska et al., 2019). 

Порушень цілісності мембран хлоропластів не спостерігалося. Тилакоїдна 

система хлоропластів не зазнала істотних змін. Простежувались незначні 

порушення міжгранальних з'єднань і руйнування ламел строми. Відбулась 

часткова деструкція тилакоїдних мембран гран. У хлоропластах гранальні 

тилакоїди після дії високої температури набули хвилеподібної форми, 
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спостерігали розширення люменальних проміжків (рис. 5.21, 11). Зменшились 

кількість і розмір крохмальних зерен у хлоропластах (рис. 5.21, 10), у стромі 

з’явились численні пластоглобули (табл. 5.9, рис. 5.21, 11). 

Мітохондрії в клітинах мезофілу контрольних рослин мали округлу форму, 

характеризувались електронно-щільним матриксом і численними розвинутими 

кристами пластинчастого типу, що свідчило про високу функціональну 

активність органел (рис. 5.21, 4). За дії теплового стресу мітохондрії помітно 

«розбухли», мембрани крист стали менш контрастними та частково 

дезорганізованими. Їхня кількість у клітинах значно зросла (табл. 5.9, рис. 

5.21, 8), що може відображати компенсаторну реакцію на підвищення 

енергетичних потреб.  

Після короткотривалої дії низької температури морфологія органел зазнала 

суттєвих змін: частина мітохондрій зберегла округлу форму і розміри, наближені 

до показників контрольних рослин, однак деякі органели набули характерної 

лінзовидної та гантелеподібної форми (рис. 5.21, 12). За обох варіантів 

температурних стресів цілісність мітохондріальних мембран не порушувалась і 

мітохондріальний матрикс не сполучався з цитоплазмою, що засвідчує 

збереження функціональної активності органел. 

Структурна реорганізація хлоропластів є одним із ключових факторів 

адаптації рослин (Bilyavska et al., 2019). У чутливих до холоду рослин 

хлоропласти першочергово зазнають структурних пошкоджень внаслідок 

охолодження (Taylor, Craig, 1971; Wise et al., 1983; Kang et al., 2007). У 

хлоропластах холодостійкої озимої пшениці та спельти за дії низької 

температури гранальні тилакоїди були добре розвинені й щільно прилягали один 

до одного. Зафіксоване регулярне розташування гран у стромі хлоропластів, 

збільшення кількості та розміру крохмальних зерен (Babenko et al., 2018, 

2019а, b). 

Наші дослідження показали, що у холодостійких рослинах жита 

Богуславка за дії низької позитивної температури суттєвої ультраструктурної 

перебудови тилакоїдів хлоропластів не зазначено, водночас, за дії високої 

температури відбулося руйнування строми, потовщення тилакоїдів гран, 

збільшення ширини люменального просвіту. Кількість пластоглобул у стромі 

хлоропластів та кількість ліпідних крапель у цитоплазмі зросла. Повідомлялось, 

що висока температура й посуха спричиняли накопичення ліпідних крапель і 

зменшення кількості крохмалю в хлоропластах пшениці (Vassileva et al., 2011). 

 



162 

 

 
Рис. 5.21. Ультраструктурна організація клітин мезофілу листків жита Богуславка. Зрізи 

отримані з середньої частини другого листка. 1–4 – контроль; 5–8 – тепловий стрес (+40 °С, 2 

год); 9–12 – охолодження (+4 °С, 2 год). Позначення: Хл – хлоропласт, М – мітохондрія, КЗ – 

крохмальне зерно, ТГ – тилакоїди гран, ТС – тилакоїди строми, ПГ – пластоглобула, Я – ядро, 

ЛК – ліпідна крапля 

 

Морфологія мітохондрій відзначається динамікою, змінюється залежно від 

функціонального стану органел (Logan, 2006). Раніше ми показали, що за дії 

низької температури в морозостійкої озимої пшениці Володарка утворювались 

«гантелеподібні» мітохондрії (Babenko et al., 2018), а в холодостійкої спельти 

Франкенкорн до 40% мітохондрій зберігали округлу форму та утворювались 

органели лінзовидної, «гантелеподібної» і «чашоподібної» форми (Babenko et al., 

2019a, b). Припускають, що за такої форми зростає площа поверхні мітохондрій, 

що посилює обмін метаболітами з цитоплазмою (Vella et al., 2012). Збільшення 
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розмірів мітохондрій сприяє підвищенню дихальної активності клітин 

(Armstrong et al., 2006). Мітохондрії проявляють надзвичайну пластичність у 

транспорті електронів і розсіюванні енергії. Альтернативний оксидазний шлях, 

який відокремлює дихання від синтезу АТФ у мітохондріях, може покращати 

продуктивність рослин, зменшити накопичення АФК (Fiorani et al., 2005; Atkin, 

Macherel, 2009). 

В останні десятиліття сформувалося уявлення, згідно з яким ушкоджуюча 

дія температурного стресу починається з порушень структури і функцій мембран 

(Lee et al., 2005). Припускають, що формування стійкості до високої температури 

пов'язане зі збільшенням частки ненасичених жирних кислот у складі ліпідів 

мембран (Theocharis et al., 2012). Зміни жирнокислотного складу ліпідів, 

спрямовані на підтримку плинності мембран на необхідному для 

функціонування фотосинтетичного та енергетичного апаратів рівні, дозволяють 

рослині вижити за короткотривалих екстремальних температур (Rurek, 2014). 

Так, більша гнучкість і еластичність мембран морозостійких рослин сприяють 

збільшенню об’єму мітохондрій, що забезпечує вищий енергетичний потенціал. 

І, навпаки, менша гнучкість мембран чутливих до охолодження тканин заважає 

клітині змінювати швидкість окислення, сприяє зниженню проникності для 

субстратів окислення, веде до накопичення ушкоджуючих інтермедіатів. 

Інтенсифікація процесів окислення мембранних ліпідів, у тому числі перекисне 

окислення ліпідів (ПОЛ), належить до універсальних сигнальних механізмів, які 

запускають адаптивні програми. ПОЛ ініціюється α-диоксигеназами та 

ліпоксигеназами (ЛОГ). Ліпоксигеназний каскад є джерелом фізіологічно 

активних сполук – оксиліпинів (Babenko et al., 2017). 

Узагальнюючи літературні дані та результати власних досліджень можна 

констатувати, що в клітинах мезофілу листків холодостійких генотипів у перші 

години впливу позитивних низьких температур відбувається низка 

ультраструктурних перебудов, спрямованих на адаптацію фотосинтетичного та 

енергетичного апарату. Ці зміни стосуються, насамперед, ультраструктури 

хлоропластів, яка зазнає значної реорганізації. Відбувається збільшення площі 

хлоропластів за рахунок розбухання строми, змінюються кількість і розмір 

крохмальних зерен і пластоглобул, утворюються виступи та інвагінації в 

мембрані хлоропластів. Зміни мембранної системи хлоропластів, індуковані 

холодом, спрямовані на захист локалізованої в мембранах тилакоїдів гран другої 

фотосистеми (ФСІI), яка чутлива до фотоінгібування, тоді як стабільніша ФСI 

знаходиться в тилакоїдних мембранах строми. Такі зміни в ультраструктурній 
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організації хлоропластів підтримують фотосинтетичну активність, що сприяє 

забезпеченню рослин асимілятами за стресових умов. 

Оскільки морфофізіологічні особливості злаків рослин малодосліджені, а 

структурна будова органів відіграє певну роль у формуванні адаптивних 

властивостей, ми провели мікроструктурний аналіз епідермісу листків спельти 

Франкенкорн і жита Богуславка (Kosakivska et al., 2018; Babenko et al., 2024). 

Листкова амфістоматична пластинка спельти Франкенкорн має яскраво-зелене 

забарвлення. На адаксіальній та абаксіальній епідермах містяться трихоми двох 

типів: хуки та довгі голкоподібні волоски (рис. 5.22 А, Б). Епідерма вкрита добре 

розвиненим шаром воску з двома типами кристалів: пластинками з нерівними 

краями та тубусами, котрі супроводжують замикаючі клітини продихів, що 

характерно для видів родини Poaceae (рис. 5.22 В, Г). 

 

 

Рис. 5.22. Мікроструктура 

епідермісу листка 14-добових 

рослин спельти Франкенкорн 

(контроль): 

А – зовнішній вигляд трихоми 

типу «хук»; 

Б – загальний вигляд адаксіальної 

поверхні листка; 

В – шар воску на адаксіальній 

поверхні листка; 

Г – продих; 

Д, Ж – абаксіальна поверхня 

листка; 

К – кремнієві клітини; 

Х – «хуки»; 

ГВ – голкоподібні волоски 

 

 

Епідермальна тканина сформована переважно з довгих звивистих клітин. 

Кремнієві клітини «silicabodies» мають прямокутні проєкції та звивисті обриси й 

розташовані біля провідних пучків (рис. 5.22 Д). Продихи парацитного типу 

містяться на обох поверхнях листкової пластинки на одному рівні з основними 

епідермальними клітинами, орієнтованими вздовж провідних пучків (рис. 5.22 Г, 

Ж). Замикаючі клітини продихів мають вигляд прямокутників із закругленими 
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кінцями. Середня частина кожної із замикаючих клітин має дуже товсту стінку, 

кінцеві ж ділянки – тонкостінні. Кількість продихів (у міжреберній зоні) на 1 мм2 

нараховує 64,44 ± 7,19 од., площа продиху становить 42,23 ± 2,14 мкм2, довжина 

продихової щілини – 10,91 ± 0,64 мкм. 

За умов помірної ґрунтової посухи та короткотривалого теплового стресу 

характерні ознаки епідермісу листкової пластинки спельти Франкенкорн 

зберігалися (Kosakivska et al., 2018). Разом із тим, збільшилась щільність воску 

(рис. 5.23 А). 

 

 
Рис. 5.23. Мікроструктура епідермісу листка рослин спельти Франкенкорн за умов 

модельованої помірної ґрунтової посухи: А – 18-та доба; Б – короткотривалий тепловий стрес, 

14-та доба 

 

Відомо, що первинними функціями кутикули і зокрема кутикулярних восків 

є захист від надмірного сонячного світла і зменшення випаровування при 

водному дефіциті (Jenks et al., 2001; Yeats, Rose, 2013). Показано, що таке 

ущільнення воску в пшениці й арабідопсису відбувалось за рахунок зростання 

кількості довголанцюгових спиртів (C28) та алканів (C29, C31) (Bernard, Joubès, 

2013; Yeats, Rose, 2013; Tian et al., 2024). Мікроструктурний аналіз 

амфістоматичної листової пластинки спельти Франкенкорн виявив присутність 

однакової кількості продихів із близькими показниками розмірів продихових 

щілин на адаксіальній та абаксіальній поверхнях. Після короткотривалого 

теплового стресу та помірної ґрунтової посухи збільшилася щільність воску на 

поверхні листової пластинки. Продихи на обох поверхнях листкової пластинки 

були закриті (рис. 5.23). 

Листова пластинка 14-добових рослин жита Богуславка має амфістоматичну 

будову. Епідерму листової пластинки формують епідермальні клітини, трихоми 

та продихи. Основну масу складають довгі клітини, які характеризуються 

витягнутими проекціями та прямокутними обрисами. Парацитарні продихи 

розташовані рівними рядами в міжреберних зонах на адаксіальній та 
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абаксіальній поверхнях листової пластинки, на одному рівні з іншими клітинами 

епідермісу та орієнтовані по жилках листової пластинки. Для довгих клітин 

епідермісу характерні подовжені виступи та прямокутні контури. Гладка 

кутикула присутня у всіх зразках. Опушення утворене простими 

одноклітинними трихомами «хук»-типу, які присутні на адаксіальній та 

абаксіальній поверхнях листової пластинки. В усіх досліджених зразках по всій 

поверхні листової пластинки з обох її боків присутні відкладення воску. 

Виявлений віск одного типу: нерівнокраї рівно- (або різно-) орієнтовані 

пластинки (рис. 5.24–5.27). Мікроструктура поверхні листків характеризується 

складчастим рельєфом. За дії високої температури рельєф листової пластинки 

стає сітчастим (рис. 5.26, 5.27). 

 

 
Рис. 5.24. Мікроструктура адаксіального епідермісу листкової пластинки жита Богуславка в 

контролі: 1, 2 – епікутикулярні воскові пластинки; 3 – міжреброва ділянка з продихами; 4 – 

трихоми. Позначення: w – епікутикулярні воскові пластинки, ct – гладка кутикула, st – продихи, 

rf – складчастий рельєф, tr – трихоми 

 

Нещодавні дослідження показали, що рослин реагують на дефіцит води 

збільшенням синтезу кутикулярного та епікутикулярного воску (Shepherd, 

Griffiths, 2006; Kosma, Jenks, 2007). У рослинах кунжуту, сої та тютюну після 

короткотривалої дії високої температури і за дефіциту вологи утворювалось 

більше воску на одиницю площі листків (Jenks et al., 2001; Cameron et al., 2006; 
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Kіm et al., 2007a, b; Kosma et al., 2009). 

 

 

Рис. 5.25. Мікроструктура абаксіального епідермісу листкової пластинки рослин жита 

Богуславка в контролі: 1, 2 – епікутикулярні воскові пластинки; 3 – міжреброва ділянка з 

продихами; 4 – трихоми. Позначення: w – епікутикулярні воскові пластинки, ct – гладка 

кутикула, st – продихи, rf – складчастий рельєф, tr – трихоми, ep – довга клітина епідермісу 

 

У численних дослідженнях повідомлялось, що збільшення кількості воску за дії 

стресу супроводжувалось значно меншою втратою вологи листками (Williams et 

al., 1999, 2000; Cameron et al., 2006). Однак залишається до кінця нез’ясованим, 

які саме зміни в кутикулі, спричинені стресом, є найбільш важливими для 

зменшення втрати вологи листками під час посухи та адаптації до дії високої 

температури (Kosma, Jenks, 2007). 

Ми визначили фенотипові ознаки епідерми листової пластинки 14-добових 

рослин Secale cereale L., які не змінювалися за різних умов зростання. Серед них: 

амфістоматична будова листків, розміщення парацитних продихів, форма клітин 

епідерми, розвинена гладка кутикула й потужний шар епікутикулярного воску, 

опушення одноклітинними трихомами типу «хук». Показано, що за дії високої 

температури рельєф листової пластинки стає сітчастим, тоді як за холодового 

стресу тип рельєфу залишається складчастим. 
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Рис. 5.26. Мікроструктура адаксіального епідермісу листкової пластинки рослин жита 

Богуславка після дії теплового стресу (+40 °С, 2 год): 1, 2 – епікутикулярні воскові пластинки; 

3 – міжреброва ділянка з продихами; 4 – трихоми. Позначення: w – епікутикулярні воскові 

пластинки, ct – гладка кутикула, st – продихи, rf – сітчастий рельєф, tr – трихоми, ep – довга 

клітина епідермісу, an – антиклінальна стінка клітини епідермісу, pc – периклінальна стінка 

клітини епідермісу 

 

 
Рис. 5.27. Мікроструктура абаксіального епідермісу листкової пластинки рослин жита 

Богуславка після дії теплового стресу (+40 °С, 2 год): 1, 2 – епікутикулярні воскові пластинки; 

3 – міжреброва ділянка з продихами; 4 – трихоми. Позначення: w – епікутикулярні воскові 

пластинки, ct – гладка кутикула, st – продихи, rf – сітчастий рельєф, tr – трихоми, ep – довга 

епідермальна клітина, антиклінальна стінка епідермальної клітини, pc – периклінальна стінка 

епідермальної клітини 
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Оскільки мікроструктура поверхні листових пластинок є важливою 

морфологічною ознакою, отриманий результат дозволяє розглядати її як 

можливий біомаркер стресостійкості. Збільшення щільності воску на поверхні 

листкової пластинки за умов помірної ґрунтової посухи та короткотривалого 

теплового стресу може свідчити про адаптаційні механізми, спрямовані на 

зменшення втрати вологи. 

Отримані результати свідчать про те, що температурні стреси та посуха 

викликають значні перебудови ультраструктури клітин мезофілу листків 

культурних злаків. Вплив високої температури супроводжується деформацією й 

деструкцією мембранних систем хлоропластів, зменшенням вмісту крохмалю, 

збільшенням кількості пластоглобул і ліпідних включень, а також структурними 

ушкодженнями мітохондрій, що вказує на зниження енергетичного потенціалу 

та метаболічної активності клітини. Дія низької позитивної температури 

переважно спричиняє набухання хлоропластів, формування стромальних 

інвагінацій та інтенсивне накопичення крохмалю, що в холодостійких видів 

розглядається як адаптивна захисна реакція, спрямована на збереження 

функціональної активності фотосинтетичного апарату. Помірна ґрунтова посуха 

призводить до зменшення розмірів хлоропластів, часткової дезорганізації 

тилакоїдної системи та зниження запасів крохмалю, проте ступінь вираженості 

цих структурних змін значною мірою залежить від генетично детермінованої 

посухостійкості конкретного виду. 

Порівняльний аналіз показав, що пшениця Подолянка як посухостійкий 

генотип зберігає відносну стабільність ультраструктури за дефіциту води. У той 

самий час морозо- та вологостійка спельта Франкенкорн виявляє високу 

чутливість до посухи. Жито Богуславка демонструє значну стійкість до 

охолодження, але зазнає суттєвих ушкоджень під впливом високої температури. 

Виявлені особливості свідчать про те, що адаптаційний потенціал вивчених 

культурних злаків формується завдяки поєднанню мембранних перебудов, змін 

у розподілі запасних речовин і функціональної гнучкості хлоропластів і 

мітохондрій. Це забезпечує підтримання фотосинтетичної та дихальної 

активності в умовах стресу. Характер і глибина ультраструктурних змін можуть 

бути надійними морфофізіологічними маркерами стійкості різних видів і 

генотипів до абіотичних стресових факторів. 
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Заключення 

 

Глобальні зміни клімату та збільшення населення планети зумовлюють 

значний попит на продукти харчування. У зв’язку із цим особлива увага 

приділяється вивченню злаків, пошукові шляхів регулювання їхньою стійкістю і 

врожайністю. Нові генотипи озимої пшениці, пшениця спельта як вірогідний 

дикий попередник сучасної м’якої пшениці та озиме жито, що відзначається 

невибагливістю до умов вирощування і морозостійкістю, посідають особливе 

місце у цих дослідженнях. 

Рослини здатні сприймати та інтегрувати різноманітні сигнали 

навколишнього середовища, що дозволяє контролювати їхній ріст та метаболізм. 

Зовнішні сигнали інтегруються з ендогенними регуляторами, зокрема 

фітогормонами. Специфічні зміни в характері накопичення, локалізації та 

співвідношенні між фітогормонами окремих класів в органах рослин за дії 

абіотичних стресів належать до головних чинників, що активують стрес-

протекторні системи та формують стратегію адаптації. Останнім часом 

інженерія фітогормонів розглядається як важлива платформа для отримання 

стресостійких рослин. Проте успіх використання фітогормонів залежить від 

глибокого розуміння шляхів їхнього біосинтезу, особливостей транслокації та 

сигналінгу, механізмів, які підвищують стресостійкість. Фітогормони є 

привабливими та ідеальними метаболітами для біотехнологічних підходів, 

спрямованих на покращання та збільшення продуктивності рослин у бажаному 

напрямі. Результати, отримані за використання екзогенних фітогормонів, 

дозволяють розглядати передпосівне праймування та фоліарну обробку як 

перспективний біотехнологічний підхід підвищення адаптивних властивостей 

культурних злаків. 

Активними учасниками метаболічних і фізіологічних процесів на різних 

етапах онтогенезу рослин є амінокислоти (АК). Саме це обумовлює особливе 

значення АК у формуванні стресостійкості і відкриває широкі можливість 

використання їх для підвищення врожайності. Регуляторні механізми, 

опосередковані застосуванням екзогенних АК, спрямовані на стимуляцію 

антиоксидантного захисту та підвищення ендогенного вмісту інших захисних 

сполук. Особливе значення набуває вивчення сигналінгу і взаємодії АК з 

фітогормонами.  

Фенольні сполуки (ФС) – ендогенні регулятори росту негормональної 

природи – відіграють важливу роль у контролі росту, впливають на ростові 

процеси безпосередньо та опосередковано, модулюючи чи регулюючи транспорт 
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фітогормонів, мають антиоксидантну, структурну, атрактантну, сигнальну та 

захисну функції. Вони застосовуються як регулятори росту в сільському 

господарстві, запобігають виляганню зернових культур, підвищують 

врожайність, покращують якість вирощуваної продукції. Застосування ФС 

зменшує кількість обробок посівів фунгіцидами. Одержано переконливі докази 

участі фенолів і флавоноїдів у формуванні й функціонуванні симбіозів рослин з 

мікроорганізмами.  

У регуляції метаболізму фітогормонів і формуванні стресостійкості задіяні 

сигнальні молекули родини ліпоксигеназ (ЛОГ). Вивчення ЛОГ-сигнальних 

шляхів дозволяє ідентифікувати молекулярні мішені, що залучені до ранніх 

стресових реакцій, та використовувати їх для створення стресостійких сортів. Це 

особливо актуально для стратегічних культур – пшениці, кукурудзи, жита, 

ячменю, рису та сорго. На основі ЛОГ-метаболітів (оксидаз жирних кислот, 

жасмонатів, α-кетолінів) можливе створення нових біостимуляторів, що 

активують ендогенні захисні шляхи. Такі препарати можуть застосовуватися як 

засіб підготовки рослин до стресів. Сучасні дослідження показують, що ключову 

роль у підтриманні стресостійкості рослин відіграють механізми пост-

трансляційної модифікації білків, зокрема фосфорилювання, убіквітинування та 

SUMO-мічення. Ці процеси дозволяють швидко змінювати ензиматичну 

активність, що критично важливо для адаптивної перебудови метаболізму. 

Застосування технологій CRISPR/Cas для редагування генів, що кодують 

ключові ферменти біосинтезу фітогормонів, амінокислот та фенольних сполук, 

відкриває можливість створення сортів з оптимізованим регуляторним профілем. 

Такі сорти можуть мати вищу врожайність за умов стресу без значних 

додаткових витрат на агротехнічні заходи. Важливим напрямом є інтеграція 

даних фенотипування високої пропускної здатності (high-throughput 

phenotyping) з геномними й метаболомними дослідженнями. Це дозволяє швидко 

відбирати генотипи з високим потенціалом адаптації, використовуючи точні 

морфофізіологічні маркери стійкості, такі як швидкість відновлення 

фотосинтетичної активності після стресу, стабільність мембран і профіль 

антиоксидантних сполук. 

Пігментна система рослин є основою для фотосинтетичного перетворення 

сонячної енергії в енергію хімічних зв'язків. Ефективність пігментної системи 

залежить від відповідності між її структурою та функцією та умовами 

навколишнього середовища. Найбільш стійким до теплового стресу та помірної 

ґрунтової посухи виявився пігментний комплекс озимої пшениці. Порівняльний 

аналіз показав, що пшениця Подолянка, як посухостійкий вид, зберігає відносну 
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стабільність ультраструктури при дефіциті води, тоді як морозо- та вологостійка 

спельта Франкенкорн виявляє високу чутливість до посухи. Жито Богуславка 

демонструє значну стійкість до охолодження, проте зазнає суттєвих ушкоджень 

за дії високої температури. Виявлені особливості свідчать, що адаптаційний 

потенціал злакових культур формується за рахунок поєднання мембранних 

перебудов, змін у розподілі запасних речовин та функціональної гнучкості 

енергетичних органел, що забезпечує підтримання фотосинтетичної та дихальної 

активності в умовах стресу. Характер і глибина ультраструктурних змін можуть 

слугувати надійними морфофізіологічними маркерами стійкості різних видів і 

сортів до абіотичних факторів середовища. 

У рослин існують чіткі механізми сприйняття різноманітних стресових 

сигналів та формування відповіді на них. Реакції на стрес індукуються та 

активуються після надходження стресового сигналу. Разом із цим, у рослинах 

сформувався механізм, за допомогою якого вони пам’ятають минулі стресові 

події та можуть підготувати необхідну відповідь на повторний стрес. 

Дослідження останнього десятиліття виявили механізми стресової пам’яті, які 

включають епігенетичну регуляцію, транскрипційне праймування, праймовану 

конформацію білків або специфічні гормональні чи метаболічні сигнатури. 
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SUMMARY 

 

Abiotic stresses are increasingly threatening global food security. By the end of 

the last decade, nearly 750 million people faced severe food shortages, and projections 

suggest that in the near future up to 1,8 billion people may experience absolute food 

scarcity due to stress-induced reductions in crop productivity. Drought, extreme 

temperatures, salinization, and soil contamination with heavy metals are among the 

most critical factors limiting yield growth and creating food risks.  

Plants possess significant adaptive potential. Hormonal regulation plays a central 

role in these adaptive responses, and the spectrum of compounds with hormone-like 

activity is steadily expanding. Both natural phytohormones and their synthetic 

analogues have emerged as important tools for modulating plant stress tolerance. 

This monograph presents a modern perspective on the molecular mechanisms 

regulating seed germination, growth, and development in cereals. It highlights the roles 

of the major classes of phytohormones – including abscisic acid, salicylic acid, indole-

3-acetic acid, jasmonates, cytokinins, gibberellins, ethylene, and brassinosteroids – in 

shaping adaptive responses. Particular emphasis is placed on abscisic acid as a key 

«stress hormone» that governs stomatal closure, transpiration reduction, and the 

activation of stress-responsive genes. 

The authors’ research on wheat, spelt, and rye is summarized, focusing on 

hormonal homeostasis under high and low positive temperatures and moderate 

drought. Case studies are provided on the protective effects of pre-sowing priming and 

foliar applications of exogenous hormones and amino acid preparations under abiotic 

stress conditions. Special attention is given to pre-sowing priming with abscisic acid 

as a promising biotechnological strategy for enhancing cereal stress tolerance. 

Separate sections address structural and functional changes in cereals under 

stress, including pigment complex dynamics, amino acid composition shifts, phenolic 

and flavonoid accumulation, and lipoxygenase activity. Modern molecular approaches 

are also discussed, such as post-translational protein modifications, CRISPR/Cas9-

based genome editing for optimized regulatory traits, and the integration of high-

throughput phenotyping with genomic and metabolomic data. Finally, epigenetic 

mechanisms of plant stress memory are explored. 

This publication is intended for scientists, educators, graduate students, and 

specialists in plant physiology, ecology, molecular biology, biotechnology, and crop 

breeding.  
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